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Abstract

During an active drug discovery program, biological assay modelling is best viewed
as a few-shot regression problem. In this work, we developed a method better
suited for this problem, as existing ones do not perform well on noisy and complex
molecular task distributions. The method learns a kernel family suitable for a
task distribution and selects the appropriate kernel for each task during inference.
To demonstrate its effectiveness, we introduce bioassay modelling datasets and
demonstrate better performances than the state of the art in the noisy and uncertain
environments of biological experiments.

1 Motivation

Deep learning methods are now pushing the frontiers of pharmaceutical R&D following breakthroughs
in domains like computer vision, autonomous driving, and natural language processing [1-4]]. So far,
the common characteristic among successful applications is the availability of high quality/quantity of
training data. However, relatively few tasks in pharmaceutical R&D can fulfill these data requirements.
For example, under the constraints of an active drug discovery program, the data from biological
assays (or bioassays) is often relatively small and noisy. Modelling such assays is thus best viewed as
a few-shot regression problem, with many variables (e.g. organisms, cell lines, readouts, experiment
conditions, etc) accounting for the data distribution generated within each assay. Due to the molecular
space (10%0) and the dataset (< 100) sizes, obtaining models that are highly accurate, noise-resistant
with well-calibrated uncertainty estimation is a challenging task. However, accuracy and noise-
robustness are critical as bioassay models are primarily intended to become surrogates for the actual
assays. Uncertainty estimation is also required because models will be used for prioritizing molecules
in subsequent experiments and better exploring of the chemical space. To meet those needs powerful
few-shot regression algorithms are required.

Recent advances in episodic meta-learning (or few-shot learning) have led to new algorithms that
learn efficiently and generalize well from small amounts of training data [} |6]. Most operate by
learning some prior knowledge across a large collection of tasks, to then transfer and adapt it to new
tasks that have limited amounts of data [7| 8]]. The nature of the meta-knowledge captured or the
amount of adaptation performed for new tasks are the main differences between few-shot algorithms.
To successfully use those algorithms for bioassay modelling, the meta-knowledge must be sufficiently
rich to allow quick extrapolation, prediction and uncertainty estimation in unseen regions of the huge
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chemical space. Moreover, given the rapidly changing data distribution from one bioassay to another,
greater adaptation capacity is required and must be accounted for during modelling.

In previous work, metric learning methods [9H13]] accumulate meta-knowledge in high capacity
and rich metric functions and use simple base-learners such as k-nearest neighbor [11} [10] or low
capacity neural networks [12] to produce adequate models for new tasks. However, they do not adapt
the covariance functions nor the base-learners at test-time. Initialization- and optimization-based
methods [[14-16] that learn the initialization points and update rules for gradient descent-based
algorithms, respectively, allow for improved adaptation on new tasks but remain compute-intensive
and memory inefficient. As both improved adaptation and rich meta-knowledge are required for
bioassay modelling, we combine the strengths of existing methods and propose ADKL (Adaptive
Deep Kernel Learning) , which frames few-shot regression as a deep kernel learning (DKL) problem.
It relieves the burden put on the feature extractor in vanilla DKL methods by adapting the kernel to
the distribution at test time.

2 Method

ADKL is inspired by the DKL framework introduced by Wilson et al. [17], which combines the
flexibility of kernel methods with deep neural networks for single task learning. This new algorithm
allows us to learn a rich data-driven prior during meta-learning, increase test-time adaptation capacity,
incorporate domain-specific knowledge, and estimate the predictive uncertainty.

Preliminaries: For a task ¢, the DKL framework takes a training dataset Df .. = {(x;,v:)}i— ;.
and produces a predictor of the form:

Hx)= D alke(¢e(x), de(xi)). (D
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where ¢, is a deep neural network that embeds inputs in a space H, k, is a kernel function over
H with hyperparameters p and o' = (a!,--- ,al)) are weights given by a differentiable kernel
method such as Gaussian Process (GP) or Kernel Ridge Regression (KRR). The framework is highly
expressive and efficient, but is limited to single task learning settings because it requires as many
samples as deep learning methods and is as slow as kernel methods. Generalizing it to few-shot
learning, we are able to alleviate these concerns to obtain a more powerful framework. It also enables
the incorporation of domain-specific knowledge in the meta-learning through the choice of the kernel
family.

ADKL: For the following, let us consider that one has access to a meta-training collection

T
Dineta—train ‘= {(D:iain, Di’a“ 1) }j:1, of T tasks to learn how to learn from few datapoints. Each

task ¢; has its own training (or support) set Dtiain and validation (or query) set Di;li q- A meta-testing
collection Zeta—test 1S also available to assess the generalization across unseen tasks. DKL can be
generalized to few-shot learning by sharing the deep neural network parameters 6 and the kernel
hyperparameters p among tasks in the meta-training loop and optimizing the following expected loss
on all tasks:

argmin E E (W (x),y), (2)
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where h'i is given by Equationusing the training set Dfiain, and [ is the loss function optimized
by the kernel method (i.e. the quadratic loss for KRR and the negative marginal likelihood for GP).
Briefly, DKL for few-shot learning (FS-DKL) consists of finding a representation common to all
tasks such that a kernel method (in our case, GP or KRR) will generalize well from a small number
of samples. It gives principled meta-learning algorithms with better adaptation capacity than metric

learning at test-time (as enabled by the kernel methods).

FS-DKL assumes that one kernel will adequately model all tasks, which may be impossible for our
bioassay modelling tasks. Consequently, we increase modelling capacity by proposing ADKL, which
learns an adaptive and task-dependent kernel rather than a single shared kernel. We define an adaptive
kernel as follows:

kaDKL(X,X';24;) := kp(pg(xX; 24, ), Pg (X5 24,)) 3)



where z;; = wn(D:iain) is a task embedding obtained by transforming a training set Diﬁain with a
task encoding network ), with parameters 7. The latter is a modified version of DeepSets, an order

invariant network proposed by Zaheer et al. [18], and captures the first and second moments of the data

distribution that have generated each Dziain. Once z; is obtained, we compute the conditional input
embedding using the function ¢ (x; z;,) by transforming x with a neural network u, concatenating
u(x) with z;,, and applying a non-linear mapping to this concatenation. This nonlinear mapping
allows the capture of complex interactions between the task and the input representations. The
adaptive kernel is then computed using Equation [3|and A%/ is obtained using a differentiable kernel
method. ADKL-GP and ADKL-KRR will be used to refer to the algorithms we derived from the

framework when the respective task-level regressors are obtained using GP and KRR.

3 Experiments

3.1 Datasets

We introduce and use two benchmarks for bioassay modelling in our experiments: Binding and
Antibacterial (available here).

1. Binding: The goal of each task in this collection is to predict the binding affinity of small, drug-
like molecules to a protein. The collection was extracted from the public database BindingDB
and encompasses 7,620 tasks, each containing between 10 and 9,000 samples. Each task is
characterized by the protein for which molecule bindings are measured.

2. Antibacterial: The goal here is to predict the antimicrobial activity of small molecules for various
bacteria. The task collection was extracted from the public database PubChem/and contains 3,842
tasks, each consisting of 10 to 225 samples. A task is characterized by a bacterial strain.

For both collections, the molecules are represented by their SMILES (documentation here), which
describe of the molecular structures using short ASCII strings. All models evaluated on these
collections share the same input feature extractor configuration: a 1-D CNN of 2 layers of 128 hidden
units each and a kernel size of 5. We use CNN instead of LSTM or advanced graph convolution
methods for scalability reasons. Moreover, the targets were scaled linearly between 0 and 1.

We also include the same Sinusoids task collection proposed by Kim et al. [[15] in our experiments to
see our method performance outside of bioassay modelling tasks.

3.2 Benchmarking analysis

We evaluate model performance against R2-D2 [[13]], CNP[19]], and MAML[14]]. R2-D2 is a natural
comparison to ADKL-KRR (when the latter uses the linear kernel) to show whether the adapted deep
kernel provides more test-time adaptation. CNP is also a natural comparison to ADKL-GP and will
help measure performance differences between the task-level Bayesian models generated within the
GP and CNP frameworks. MAML is considered herein for its fast-adaptation at test-time and as the
representative of initialization and optimization based models. In the following experiments, all DKL
methods use the linear kernel.

Our first set of experiments evaluates performance on both the real-world and toy tasks. We train each
method using support and query sets of size m = 10. During meta-testing, the support set size is
also m = 10, but the query set consists of the remaining samples of each task. For datasets lacking
sufficient samples (from the Binding and Antibacterial collections), we use half of the samples in
the support set and the remaining in the query set. For each task, during meta-testing, we average
the Mean Squared Error (MSE) over 20 random partitions of the query and support sets. We refer to
this value as the task MSE. Table [Tl shows the mean MSE over tasks in the meta-test set for all the
benchmarks and algorithms. In general, we observe that the real-world datasets are challenging for
all methods but ADKL-KRR methods consistently outperform R2-D2 and CNP. The gap between
ADKL-KRR and R2-D2 shows the importance of adapting the kernel to each task rather than sharing
a single kernel. The direct comparison of ADKL-KRR and R2-D2 shows that adapting the kernel to
each task helps significantly compared to a shared single kernel.


https://anonymous.4open.science/r/c1c2daac-6438-41cf-93ef-303322a093cb/
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https://pubchem.ncbi.nlm.nih.gov/
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model Antibacterial Binding Sinusoids

ADKL-GP 0.087 0.093 0.327 £ 0.042
ADKL-KRR 0.078 0.088 0.138 + 0.004
BMAML 0.106 0.094  0.744% 0.020
CNP 0.083 0.094  0.607+ 0.056
Learned Basis 0.091 0.101  0.475 £ 0.063
Proto-MAML 0.092 0.090 1.457 +£0.029
R2-D2 0.093 0.098 0.172+ 0.011
MAML - - 1.651+0.040

Table 1: Meta-test MSE. The uncertainty was computed over 10 runs for the Sinusoids

3.3 Active Learning

In our second set of experiments, we intent to measure the effectiveness of the uncertainty captured by
the predictive distribution of ADKL-GP for active learning. CNP, in comparison, serves to measure
which of CNP and GP better captures the data uncertainty for improving FSR under active sample
selection. For this purpose, we meta-train both algorithms using support and query sets of size
m = 5 (and T € {100, 1000} for the Sinusoids collection). During meta-test time, five samples
are randomly selected to constitute the support set D, i, and build the initial hypothesis for each
task. Then, from a pool U of unlabeled data, we choose the input x* of maximum predictive entropy,
ie., x* = argmax, c;E [log p(y|X, Dirain)]. The latter is removed from U and added to Dyyain With
its predicted label. The within-task adaptation is performed on the new support set to obtain a new
hypothesis which is evaluated on the query set Dy,1iq of the task. This process is repeated until we
reach the allowed budget of 20 queries.

Figure[T|highlights that, in the active learning setting, ADKL-GP consistently outperforms CNP. Very
few samples are queried by ADKL-GP to capture the data distribution, while CNP performance is far
from optimal, even when allowed the maximum number of queries. Also, since using the maximum
predictive entropy strategy is better than querying samples at random for ADKL-GP (solid vs. dashed
line), these results suggest that the predictive uncertainty obtained with GP is informative and more
accurate than that of CNP. Moreover, when the number of queries is greater than 10, we observe a
performance degradation for CNP, while ADKL-GP remains consistent. This observation highlights
the generalization capacity of DKL methods, even outside the few-shot regime where they have been
trained — this same property does not hold true for CNP. We attribute this property of DKL methods
to their use of kernel methods. In fact, their role in adaptation and generalization increases as we
move away from the few-shot training regime.

sssssss ds, T = 100 sinusoids, T = 1000 antibacterial bindingdb
0080

Figure 1: Average MSE performance on the meta-test during active learning. The width of the shaded
regions denotes the uncertainty over five runs for the sinusoidal collection. No uncertainty is
shown for the real-world tasks as they were too time consuming.

Conclusion

In this paper, we investigated bioassay modelling using few-shot regression (FSR) algorithms. We
propose a new kernel based framework for FSR and demonstrate its superiority in test-time adaptation
to the current state of the art methods. Also, by making our bioassay modelling collections publicly
available, we hope that the community will leverage them to propose FSR algorithms that are ready
to be deployed in real-life settings, in turn having a positive impact on drug discovery.
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