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Abstract

Meta-learning is a promising technique to learn new concepts with small amounts
of data. However, most meta-learning algorithms implicitly require that the meta-
training tasks be mutually-exclusive, such that no single model can solve all of the
tasks at once. If this is not done, the meta-learner can ignore the task training data
and learn a single model that performs all of the meta-training tasks zero-shot, but
does not adapt effectively to new image classes. This requirement limits the do-
mains that meta-learning can be effectively applied on. In this paper, we address
this challenge by designing a meta-regularization objective using information the-
ory that places precedence on data-driven adaptation. By doing so, our algorithm
can successfully use data from non-mutually-exclusive tasks to efficiently adapt
to novel tasks. We demonstrate its applicability to both contextual and gradient-
based meta-learning algorithms, and apply it in practical settings where applying
standard meta-learning has been difficult. Our approach substantially outperforms
standard meta-learning algorithms in these settings.

1 Introduction

The ability to learn new concepts and skills with small amounts of data is a critical aspect of in-
telligence that many machine learning systems lack. Meta-learning (Schmidhuber, 1987) accom-
plishes this by explicitly optimizing for few-shot generalization across a set of meta-training tasks.
While these methods have shown promising results, current methods require careful design of the
meta-training tasks to prevent a subtle form of task overfitting, distinct from standard overfitting in
supervised learning. If the task can be accurately inferred from the test input alone, the task training
data can be ignored while still achieving low meta-training loss. In effect, the model will collapse
to one that makes zero-shot decisions. This presents an opportunity for overfitting where the meta-
learner generalizes on meta-training tasks, but fails to adapt when presented with training data from
novel tasks. We call this form of overfitting the memorization problem in meta-learning because the
meta-learner memorizes a function that solves all of the meta-training tasks, rather than adapting.

Existing meta-learning algorithms implicitly resolve this problem by carefully designing the meta-
training tasks such that no single model can solve all tasks zero-shot; we call tasks constructed in
this way mutually-exclusive. This ensures that the task-specific class-to-label assignment cannot
be inferred from a test input alone. However, the mutually-exclusive tasks requirement places a
substantial burden on the user to cleverly design the meta-training setup (e.g., by shuffling labels
or omitting goal information). While shuffling labels provides a reasonable mechanism to force
tasks to be mutually-exclusive with standard few-shot image classification datasets such as MiniIm-
ageNet (Ravi & Larochelle, 2016), this solution cannot be applied to all domains where we would
like to utilize meta-learning, as examples shown in the next section.

Implementation and examples available here: https://github.com/google-research/
google-research/tree/master/meta_learning_without_memorization.
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In this work, we identify and formalize the memorization problem in meta-learning, and propose
a meta-regularizer (MR) using information theory as a general approach for mitigating this prob-
lem without. In a series of experiments on non-mutually-exclusive task distributions, we find that
memorization poses a significant challenge for both gradient-based (Finn et al., 2017) and contex-
tual (Garnelo et al., 2018) meta-learning methods, resulting in near random performance on test
tasks in some cases. Our meta-regularization approach enables both of these methods to achieve
efficient adaptation and generalization, leading to substantial performance gains across the board on
non-mutually-exclusive tasks.

2 The Memorization Problem in Meta-Learning

We consider the standard supervised meta-learning setup as in Finn et al. (2017). Briefly, we as-
sume tasks Ti are sampled from an (unknown) distribution p(T ). For each task, we are given task
training data Di = (Xi, Yi) and validation data D∗i = (X∗i , Y

∗
i ) with Xi = (xi1, . . . , xiK), Yi =

(yi1, . . . , yiK) and similarly for D∗i . Denote M as all the data that have been used in the meta-
training M = {Di, D

∗
i }Ni=1. Following Grant et al. (2018); Gordon et al. (2018), we consider

meta-learning algorithms that produce a distribution q(τ |D), which summarizes the task training
data and a prediction distribution q(y∗|x∗, τ). This includes popular meta-learning algorithms such
as MAML (Finn et al., 2017) and conditional neural processes (CNP) (Garnelo et al., 2018). For a
test task with training data D, our goal is to maximize the log-likelihood of y∗ given input x∗ and
D under the model (i.e., logEq(τ |D) [q(y

∗|x∗, τ)]).
Ideally, the meta-learning algorithm will learn to generalize to novel tasks. However, we find that
unless tasks are carefully designed, current meta-learning algorithms can overfit to the tasks and
end up ignoring the task training data (i.e., either q(τ |D) does not depend on D or q(y∗|x∗, τ) does
not depend on τ ) which can lead to poor generalization. This memorization phenomenon is best
understood with an example.

Consider a 3D object pose prediction problem (illustrated in Figure 1 and described in detail below).
Each task corresponds to a 3D object and a random canonical pose for that object. The (x, y) pairs
for the task are 2D grey-scale images of the rotated object (x) and the rotation angle relative to the
canonical pose for that object (y). When generating the dataset, we randomly sample the canonical
pose rotation for each 3D object and maintain the same random canonical pose every time that object
is used in a task. Hence, for an unseen 3D object, the task is impossible without using D because
the canonical pose for the unseen object is unknown.

The number of objects in the dataset is small, so it is straightforward for a single network to infer
the object from the input image and to memorize the canonical pose for each training object, thus
achieving a low training error without using D. However, by construction, this solution will neces-
sarily have poor generalization to new tasks. In practice, we find that MAML and CNP frequently
converge to this solution (Table 2). For training tasks, the network generalizes to unseen (x, y)
pairs, which distinguishes this from typical overfitting in supervised learning. We formally define
(complete) memorization as:

Definition 1 (Complete Meta-Learning Memorization) Complete memorization in meta-
learning is when the learned model ignores the task training data such that I(ŷ∗;D|x∗, θ) = 0 (i.e.,
q(ŷ∗|x∗, θ,D) = q(ŷ∗|x∗, θ) = ED′|x∗ [q(ŷ∗|x∗, θ,D′)]).

3 Information-Theoretic Meta-Regularization

At a high level, the sources of information in the predictive distribution q(ŷ∗|x∗, θ,D) come from
the input, the meta-parameters, and the data. The memorization problem occurs when the model
encodes task information in the predictive network that is readily available from the task training set
(i.e., it memorizes the task information for each meta-training task). We could resolve this problem
by encouraging the model to minimize the training error and to rely on the task training dataset as
much as possible for the prediction of y∗ (i.e., to maximize I(ŷ∗;D|x∗, θ)). Explicitly maximizing
I(ŷ∗;D|x∗, θ) requires an intractable marginalization over task training sets to compute q(ŷ∗|x∗, θ).
Instead, we can implicitly encourage it by restricting the information flow from other sources (x∗
and θ) to ŷ∗. To achieve both low error and low mutual information between ŷ∗ and (x∗, θ), the
model must use task training data D to make predictions, hence increasing the mutual information
I(ŷ∗;D|x∗, θ), leading to reduced memorization.
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Figure 1: Left: An example of non-mutually-exclusive pose prediction tasks, which may lead to the memoriza-
tion problem. The training tasks are non-mutually-exclusive because the test data label (right) can be inferred
accurately without using task training data (left) in the training tasks, by memorizing the canonical orientation
of the meta-training objects. For a new object and canonical orientation (bottom), the task cannot be solved
without using task training data (bottom left) to infer the canonical orientation. Right: Graphical model for
meta-learning. Observed variables are shaded. Without either one of the dashed arrows, Ŷ ∗ is conditionally
independent of D given θ and X∗, which we refer to as complete memorization (Definition 1).

To achieve both low error and low mutual information between ŷ∗ and (x∗, θ), the model must use
task training data D to make predictions, hence increasing the mutual information I(ŷ∗;D|x∗, θ),
leading to reduced memorization. In this section, we describe two tractable ways to achieve this.

Given θ, the statistical dependency between x∗ and ŷ∗ is controlled by the direct path from x∗ to
ŷ∗ and the indirect path through D (see Figure 1), where the latter is desirable. We can control the
information flow between x∗ and ŷ∗ by introducing an intermediate stochastic bottleneck variable z∗
such that q(ŷ∗|x∗, φ, θ) =

∫
q(ŷ∗|z∗, φ, θ)q(z∗|x∗, θ) dz∗ (Alemi et al., 2016) as shown in Figure 2.

Now, we would like to maximize I(ŷ∗;D|z∗, θ) to prevent memorization. We can lower bound this
mutual information by

I(ŷ∗;D|z∗, θ) ≥ I(x∗; ŷ∗|D, θ)− E [DKL(q(z
∗|x∗, θ)||r(z∗))] (1)

where r(z∗) = N (z∗; 0, I) is a variational approximation to the marginal (see Figure 2 and Ap-
pendix A.1 for the proof). In practice, replacing the maximization of I(x∗; ŷ∗|D, θ) with minimiza-
tion of the training loss, we have

EM,D,D∗
[
log q(ŷ∗ = y∗|x∗, φ, θ)− βDKL(q(z

∗|x∗, θ)||r(z∗))
]
, (2)

which is in the form of an information bottleneck (Tishby et al., 2000). Instead of the activation z∗,
we can also view the predictor network weights θ as random variables that depend on the stochas-
ticity of training dynamics (Hinton & Van Camp, 1993). Following the decomposition of the cross-
entropy loss as in (Achille & Soatto, 2018), we can add I(y∗1:N , D1:N ; θ|x∗1:N ) as a regularizer to the
loss function which measures the amount of information memorized in the weights about the labels
that is unrelated to the data distribution. The regularizer can be upper bounded by

I(y∗1:N , D1:N ; θ|x∗1:N ) = EM [log q(θ|M)
q(θ|x∗1:N ) ] ≤ EMDKL(q(θ|M)||p(θ)),

with p(θ) = N (θ; 0, I) and q(θ|M) = N (θµ, θσ), the meta-regularized objective is

EM,D,D∗Eθ∼q(θ|M),φ∼q(φ|D,θ)
[
log q(ŷ∗ = y∗|x∗, φ, θ)− βDKL(q(θ|M)||p(θ))

]
. (3)

4 Experiments
We evaluate MAML and CNP and their meta-regularized versions MR-MAML(A), MR-CNP(A),
MR-MAML(W), and MR-CNP(W). (A) denotes meta-regularization of the activations (Eq. 2) and
(W) denotes meta-regularization of the weights (Eq. 3).

4.1 Sinusoid Regression
First, we consider a toy sinusoid regression problem that is mutually-inclusive. The data for each
task is created in the following way: the amplitude A of the sinusoid is uniformly sampled from a
finite set A = {0.1, 0.3, . . . , 4} of 20 equally-spaced points, u is sampled uniformly from [−5, 5],
and y is sampled from N (A sin(u), 0.12). For the mutually-inclusive sinusoid regression problem,
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we provide both u and the amplitude A (as a one-hot vector) as input. It is straightforward to learn
a single network that uses the input A to achieve low training error without using the task training
data. At the test time, we expand the range of tasks by sampling the data-generating amplitude A
uniformly randomly from a [0.1, 4] and use a random one-hot vector as input to the network. The
meta-training tasks are a proper subset of the meta-testing tasks.

Without the additional amplitude input, both MAML and CNP can easily solve the task. However,
once we add the additional amplitude input, both MAML and CNP converge to the memorization
solution and fail to generalize well to test data (Table 1 and Appendix Figures 4 and 5). Our proposed
meta-regularizers encourage the algorithm to use the task training data during meta-training. At the
test-time, MR-MAML and MR-CNP greatly outperform the unregularized methods.

Table 1: Test MSE for the non-mutually-exclusive sinusoid regression problem. We compare MAML and CNP
against meta-regularized MAML (MR-MAML) and meta-regularized CNP (MR-CNP) where regularization is
either on the activations (A) or the weights (W). We report the mean and the standard deviation over 5 trials.

Methods MAML MR-MAML(A)
(ours)

MR-MAML(W)
(ours) CNP MR-CNP(A)

(ours)
MR-CNP(W)

(ours)

5 shot 0.46 (0.04) 0.17 (0.03) 0.16 (0.04) 0.91 (0.10) 0.10 (0.01) 0.11 (0.02)
10 shot 0.13 (0.01) 0.07 (0.02) 0.06 (0.01) 0.92 (0.05) 0.09 (0.01) 0.09 (0.01)

4.2 Pose Prediction

Next, we created a multi-task regression dataset based on the Pascal 3D data (Xiang et al., 2014).
The dataset consists of 10 classes of 3D objects such as “aeroplane”, “sofa”, “TV monitor”, etc.
Each class has multiple different objects and there are 65 objects in total. We randomly select 50
objects for meta-training and the other 15 objects for meta-testing. For each object, we randomly
select a canonical pose for the object, and use MuJoCo to render images with random orientations of
the object on a table (see Figure 1 for an illustration of the problem). The meta-learning algorithm
takes the image as input and predicts the orientation relative to the canonical pose.

Table 2: Meta-test MSE for the pose prediction problem. We compare MR-MAML (ours) with conventional
MAML and fine-tuning (FT). We report the average over 5 trials and standard deviation in parentheses.

Method MAML MR-MAML(W)
(ours) CNP MR-CNP(W)

(ours) FT FT + Weight Decay

MSE 5.39 (1.31) 2.26 (0.09) 8.48 (0.12) 2.89 (0.18) 7.33 (0.35) 6.16 (0.12)

The results on the meta-test set are shown in Table 2. We additionally include fine-tuning as baseline,
which trains a single network on all the instances jointly, and then fine-tunes on the task training data.
We also compare with weight decay regularization on all the weights. We choose the learning rate
from {10−4, 5 × 10−4, 10−3} and β from {10−6, 10−5, · · · , 1} for meta-regularization and report
the best result for each method. Meta-learning with meta-regularization (on weights) outperforms
all the competing methods by a large margin and has better stability for different training dynamics.
We plot the test MSE as a function of β in Appendix Figure 6. Modulating β can shift the optimal
solution from the memorization solution to the adaptation solution.

When the meta-regularization is on the activations, the solution that the algorithms converge to de-
pends on the learning rate. Our hypothesis is that the information content of the prediction ŷ∗ is
not large, high likelihood can be achieved with small I(x∗; ŷ∗|θ) which is smaller than the varia-
tional bottleneck bound. We find that meta-regularization on the weights does not suffer from this
pathology and is robust to different learning rates.

5 Conclusion
We identify the memorization problem and an information-theoretic meta-learning objective that
places precedence on data-driven adaptation. This causes the meta-learner to decide what should
be learned from data and what must be inferred from the input. By doing so, the algorithm can
successfully use experience across mutually-inclusive tasks to quickly adapt to new tasks. We com-
bine our approach with both contextual and gradient-based meta-learning algorithms and apply it in
practical settings where meta-learning has not previously been applied, substantially outperforming
traditional meta-learning algorithms and transfer learning methods.
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A Appendix

A.1 Derivation of Meta Regularization on Activation

First we show that I(x∗; ŷ∗|D, z∗, θ) ≤ I(ŷ∗;D|z∗, θ). By Figure 2, we have that
I(ŷ∗;x∗|θ,D, z∗) = 0. By the chain rule of mutual information we have

I(ŷ∗;D|z∗, θ) =I(ŷ∗;D|z∗, θ) + I(ŷ∗;x∗|D, θ, z∗)
=I(ŷ∗;x∗,D|θ, z∗)
=I(x∗; ŷ∗|D, θ, z∗) + I(ŷ∗;D|θ, z∗)
≥I(x∗; ŷ∗|D, θ, z∗) (4)

Then with the dependency structure as shown in Figure 2, the derivation follows

I(ŷ∗;D|z∗, θ) ≥ I(x∗; ŷ∗|D, θ, z∗) = I(x∗; ŷ∗|D, θ)− I(x∗; z∗|D, θ) + I(x∗; z∗|ŷ∗, D, θ)

≥ I(x∗; ŷ∗|D, θ)− I(x∗; z∗|D, θ) = I(x∗; ŷ∗|D, θ)− Ep(x∗)q(z∗|x∗,θ,D)

[
log

q(z∗|x∗, θ,D)

q(z∗|θ,D)

]
= I(x∗; ŷ∗|D, θ)− Ep(x∗)q(z∗|x∗,θ)

[
log

q(z∗|x∗, θ)
q(z∗|θ,D)

]
≥ I(x∗; ŷ∗|D, θ)− E

[
log

q(z∗|x∗, θ)
r(z∗)

]
= I(x∗; ŷ∗|D, θ)− E [DDKL(q(z

∗|x∗, θ)||r(z∗))]

(5)

Figure 2: Graphical model of the regularization on activations. Observed variables are shaded and
Z is bottleneck variable. The complete memorization corresponds to the graph without the dashed
arrows.

A.2 Additional Experimental Results

Figure 3: The trace plot of MAML and MR-MAML at the test-time in non-mutually-exclusive
sinusoid problem. For each trial, we calculate mean MSE over 100 randomly generated meta-testing
tasks. The trace plot show the mean and standard deviation of the results for 5 random trials.
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(a) CNP

(b) MR-CNP(A)

(c) MR-CNP(W)

Figure 4: The illustrative results of non-mutually-exclusive sinusoid regression with neural pro-
cesses at test-time. For each row, the amplitude of true function are set by four random samples
from [0.1, 4]. The one-hot vector part of input at the test-time is fixed as e10 which is 20-way one-
hot vector with the 10-th position as 1. (a): The prediction of vanilla CNP is largely determined by
one-hot vector part of the input and cannot adapt to new support points at test-time which shows
large generalization error for unseen tasks. (b) (c): Adding meta-regularization on both activation
and weights can force the CNP to use the support data at meta-training and generalize well at the
test-time for the unseen tasks.
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(a) MAML

(b) MR-MAML(A)

(c) MR-MAML(W)

Figure 5: The illustrative results of non-mutually-exclusive sinusoid regression with MAML at test-
time. For each row, the amplitude of true function are set by four random samples from [0.1, 4]. The
one-hot vector part of input at the test-time is fixed as e10 which is 20-way one-hot vector with the
10-th position as 1. (a): Due to memorization, MAML adapts slowly at test-time and overfits when
the number of data is small. (b) (c): Adding meta-regularization on both activation and weights can
recover the capability of fast adaptation.

Figure 6: The change of test error with different β. The magnitude of β controls the amount of
information in the weights. Small β leads to memorization problem which ignores the task training
data while large β forces the weights to contain no information which ignores the meta-training data.
A properly chosen β leads to the best generalization. The plot show the mean and standard deviation
of the results for 5 random trials.
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