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Abstract

Meta-reinforcement learning algorithms can enable robots to acquire new skills
much more quickly, by leveraging prior experience to learn how to learn. However,
much of the current research on meta-reinforcement learning focuses on task distri-
butions that are very narrow. For example, a commonly used meta-reinforcement
learning benchmark uses different running velocities for a simulated robot as differ-
ent tasks. When policies are meta-trained on such narrow task distributions, they
cannot possibly generalize to more quickly acquire entirely new tasks. Therefore,
if the aim of these methods is to enable faster acquisition of entirely new behaviors,
we must evaluate them on task distributions that are sufficiently broad to enable gen-
eralization to new behaviors. In this paper, we propose an open-source simulated
benchmark for meta-reinforcement learning and multi-task learning consisting of
50 distinct robotic manipulation tasks. Our aim is to make it possible to develop
algorithms that generalize to accelerate the acquisition of entirely new, held-out
tasks. We evaluate 6 state-of-the-art meta-reinforcement learning and multi-task
learning algorithms on these tasks. Surprisingly, while each task and its variations
(e.g., with different object positions) can be learned with reasonable success, these
algorithms struggle to learn with multiple tasks at the same time, even with as few
as ten distinct training tasks. Our analysis and open-source environments pave the
way for future research in multi-task learning and meta-learning that can enable
meaningful generalization, thereby unlocking the full potential of these methods.1.

1 Introduction
While reinforcement learning (RL) has achieved some success in domains such as assembly [30], ping
pong [35], in-hand manipulation [1], and hockey [7], state-of-the-art methods require substantially
more experience than humans to acquire only one narrowly-defined skill. If we want robots to be
broadly useful in realistic environments, we instead need algorithms that can learn a wide variety of
skills reliably and efficiently. Fortunately, in most specific domains, such as robotic manipulation or
locomotion, many individual tasks share common structure that can be reused to acquire related tasks
more efficiently. For example, most robotic manipulation tasks involve grasping or moving objects
in the workspace. However, while current methods can learn to individual skills like screwing on a
bottle cap [30] and hanging a mug [33], we need algorithms that can efficiently learn shared structure
across many related tasks, and use that structure to learn new skills quickly, such as screwing a jar lid
or hanging a bag. Recent advances in machine learning have provided unparalleled generalization
capabilities in domains such as images [28] and speech [11], suggesting that this should be possible;
however, we have yet to see such generalization to diverse tasks in reinforcement learning settings.

∗ denotes equal contribution
1Videos of the benchmark tasks are on the project page: meta-world.github.io. Our open-sourced codes
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Figure 1: Meta-World contains 50 manipulation tasks, designed to be diverse yet carry shared structure that can
be leveraged for efficient multi-task RL and transfer to new tasks via meta-RL. In the most difficult evaluation,
the method must use experience from 45 training tasks (left) to quickly learn distinctly new test tasks (right).

Recent works in meta-learning and multi-task reinforcement learning have shown promise for
addressing this gap. Multi-task RL methods aim to learn a single policy that can solve multiple tasks
more efficiently than learning the tasks individually, while meta-learning methods train on many
tasks, and optimize for fast adaptation to a new task. While these methods have made progress, the
development of both classes of approaches has been limited by the lack of established benchmarks
and evaluation protocols that reflect realistic use cases. On one hand, multi-task RL methods have
largely been evaluated on disjoint and overly diverse tasks such as the Atari suite [23], where there is
little efficiency to be gained by learning across games [39]. On the other hand, meta-RL methods
have been evaluated on very narrow task distributions. For example, one popular evaluation of
meta-learning involves choosing different running directions for simulated legged robots [17], which
then enables fast adaptation to new directions. While these are technically distinct tasks, they are a
far cry from the promise of a meta-learned model that can adapt to any new task within some domain.
In order to study the capabilities of current multi-task and meta-reinforcement learning methods and
make it feasible to design new algorithms that actually generalize and adapt quickly on meaningfully
distinct tasks, we need evaluation protocols and task suites that are broad enough to enable this sort
of generalization, while containing sufficient shared structure for generalization to be possible.

The key contributions of this work are a suite of 50 diverse simulated manipulation tasks and an
extensive empirical evaluation of how previous methods perform on sets of such distinct tasks. We
contend that multi-task and meta reinforcement learning methods that aim to efficiently learn many
tasks and quickly generalize to new tasks should be evaluated on distributions of tasks that are diverse
and exhibit shared structure. To this end, we present a benchmark of simulated manipulation tasks
with everyday objects, all of which are contained in a shared, table-top environment with a simulated
Sawyer arm. By providing a large set of distinct tasks that share common environment and control
structure, we believe that this benchmark will allow researchers to test the generalization capabilities
of the current multi-task and meta RL methods, and help to identify new research avenues to improve
the current approaches. Our empirical evaluation of existing methods on this benchmark reveals
that, despite some impressive progress in multi-task and meta-reinforcement learning over the past
few years, current methods are generally not able to learn diverse task sets, much less generalize
successfully to entirely new tasks. We provide an evaluation protocol with evaluation modes of
varying difficulty, and observe that current methods only show success in the easiest modes. This
opens the door for future developments in multi-task and meta reinforcement learning: instead of
focusing on further increasing performance on current narrow task suites, we believe that it is essential
for future work in these areas to focus on increasing the capabilities of algorithms to handle highly
diverse task sets. By doing so, we can enable meaningful generalization across many tasks and
achieve the full potential of meta-learning as a means of incorporating past experience to make it
possible for robots to acquire new skills as quickly as people can.
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2 Related Work
Previous works that have proposed benchmarks for reinforcement learning have largely focused on
single task learning settings [2, 9, 53]. One popular benchmark used to study multi-task learning
is the Arcade Learning Environment, a suite of dozens of Atari 2600 games [31]. While having a
tremendous impact on the multi-task reinforcement learning research community [39, 44, 23, 14, 52],
the Atari games included in the benchmark have significant differences in visual appearance, controls,
and objectives, making it challenging to acquire any efficiency gains through shared learning. In
fact, many prior multi-task learning methods have observed substantial negative transfer between the
Atari games [39, 44]. In contrast, we would like to study a case where positive transfer between the
different tasks should be possible. We therefore propose a set of related yet diverse tasks that share
the same robot, action space, and workspace.

Meta-reinforcement learning methods have been evaluated on a number of different problems,
including maze navigation [13, 55, 34], continuous control domains with parametric variation across
tasks [17, 43, 40, 16], bandit problems [55, 13, 34, 42], levels of an arcade game [38], and locomotion
tasks with varying dynamics [36, 45]. Complementary to these evaluations, we aim to develop a
testbed of tasks and an evaluation protocol that are reflective of the challenges in applying meta-
learning to robotic manipulation problems, including both parameteric and non-parametric variation
in tasks.

There is a long history of robotics benchmarks [5], datasets [29, 18, 58, 6, 21, 32, 51], compe-
titions [10] and standardized object sets [4, 8] that have played an important role in robotics
research. Similarly, there exists a number of robotics simulation benchmarks including visual
navigation [47, 27, 3, 46, 57], autonomous driving [12, 56, 41], grasping [24, 26, 20], single-task
manipulation [15], among others. In this work, our aim is to continue this trend and provide a large
suite of tasks that will allow researchers to study multi-task learning, meta-learning, and transfer in
general. Further, unlike these prior simulation benchmarks, we particularly focus on providing a suite
of many diverse manipulation tasks and a protocol for multi-task and meta RL evaluation.

3 The Multi-Task and Meta-RL Problem Statements
Our proposed benchmark is aimed at making it possible to study generalization in meta-RL and
multi-task RL. In this section, we define the meta-RL and multi-task RL problem statements, and
describe some of the challenges associated with task distributions in these settings.

We use the formalism of Markov decision processes (MDPs), where each task T corresponds to a
different finite horizon MDP, represented by a tuple (S,A, P,R,H, γ), where s ∈ S correspond to
states, a ∈ A correspond to the available actions, P (st+1|st, at) represents the stochastic transition
dynamics, R(s, a) is a reward function, H is the horizon and γ is the discount factor. In standard
reinforcement learning, the goal is to learn a policy π(a|s) that maximizes the expected return, which
is the sum of (discounted) rewards over all time. In multi-task and meta-RL settings, we assume a
distribution of tasks p(T ). Different tasks may vary in any aspect of the Markov decision process,
though efficiency gains in adaptation to new tasks are only possible if the tasks share some common
structure. For example, as we describe in the next section, the tasks in our proposed benchmark have
the same action space and horizon, and structurally similar rewards and state spaces.2

Multi-task RL problem statement. The goal of multi-task RL is to learn a single, task-
conditioned policy π(a|s, z), where z indicates an encoding of the task ID. This policy should
maximize the average expected return across all tasks from the task distribution p(T ), given by
ET ∼p(T )[Eπ[

∑T
t=0 γ

tRt(st, at)]]. The information about the task can be provided to the policy
in various ways, e.g. using a one-hot task identification encoding z that is passed in addition to
the current state. There is no separate test set of tasks, and multi-task RL algorithms are typically
evaluated on their average performance over the training tasks.

Meta-RL problem statement. Meta-reinforcement learning aims to leverage the set of training task
to learn a policy π(a|s) that can quickly adapt to new test tasks that were not seen during training,
where both training and test tasks are assumed to be drawn from the same task distribution p(T ).

2In practice, the policy must be able to read in the state for each of the tasks, which typically requires them to
at least have the same dimensionality. In our benchmarks, some tasks have different numbers of objects, but the
state dimensionality is always the same, meaning that some state coordinates are unused for some tasks.
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Typically, the training tasks are referred to as the meta-training set, to distinguish from the adaptation
(training) phase performed on the (meta-) test tasks. During meta-training, the learning algorithm
has access to M tasks {Ti}Mi=1 that are drawn from the task distribution p(T ). At meta-test time, a
new task Tj ∼ p(T ) is sampled that was not seen during meta-training, and the meta-trained policy
must quickly adapt to this task to achieve the highest return with a small number of samples. A key
premise in meta-RL is that a sufficiently powerful meta-RL method can meta-learn a model that
effectively implements a highly efficient reinforcement learning procedure, which can then solve
entirely new tasks very quickly – much more quickly than a conventional reinforcement learning
algorithm learning from scratch. However, in order for this to happen, the meta-training distribution
p(T ) must be sufficiently broad to encompass these new tasks. Unfortunately, most prior work in
meta-RL evaluates on very narrow task distributions, with only one or two dimensions of parametric
variation, such as the running direction for a simulated robot [17, 43, 40, 16].

4 Meta-World
If we want meta-RL methods to generalize effectively to entirely new tasks, we must meta-train on
broad task distributions that are representative of the range of tasks that a particular agent might need
to solve in the future. To this end, we propose a new multi-task and meta-RL benchmark, which
we call Meta-World. In this section, we motivate the design decisions behind the Meta-World tasks,
discuss the range of tasks, describe the representation of the actions, observations, and rewards, and
present a set of evaluation protocols of varying difficulty for both meta-RL and multi-task RL.

4.1 The Space of Manipulation Tasks: Parametric and Non-Parametric Variability

Parametric Task Variation

Non-Parametric Task Variation

Reach Puck Open Window

Figure 2: Parametric/non-
parametric variation: all “reach
puck” tasks (left) can be param-
eterized by the puck position,
while the difference between
“reach puck” and “open window”
(right) is non-parametric.

Meta-learning makes two critical assumptions: first, that the meta-
training and meta-test tasks are drawn from the same distribution,
p(T ), and second, that the task distribution p(T ) exhibits shared
structure that can be utilized for efficient adaptation to new tasks. If
p(T ) is defined as a family of variations within a particular control
task, as in prior work [17, 40], then it is unreasonable to hope for
generalization to entirely new control tasks. For example, an agent
has little hope of being able to quickly learn to open a door, without
having ever experienced doors before, if it has only been trained on a
set of meta-training tasks that are homogeneous and narrow. Thus, to
enable meta-RL methods to adapt to entirely new tasks, we propose
a much larger suite of tasks consisting of 50 qualitatively-distinct
manipulation tasks, where continuous parameter variation cannot be
used to describe the differences between tasks.

With such non-parametric variation, however, there is the danger
that tasks will not exhibit enough shared structure, or will lack the
task overlap needed for the method to avoid memorizing each of the
tasks. Motivated by this challenge, we design each task to include
parametric variation in object and goal positions, as illustrated in
Figure 2. Introducing this parametric variability not only creates a substantially larger (infinite)
variety of tasks, but also makes it substantially more practical to expect that a meta-trained model will
generalize to acquire entirely new tasks more quickly, since varying the positions provides for wider
coverage of the space of possible manipulation tasks. Without parametric variation, the model could
for example memorize that any object at a particular location is a door, while any object at another
location is a drawer. If the locations are not fixed, this kind of memorization is much less likely, and
the model is forced to generalize more broadly. With enough tasks and variation within tasks, pairs
of qualitatively-distinct tasks are more likely to overlap, serving as a catalyst for generalization. For
example, closing a drawer and pushing a block can appear as nearly the same task for some initial
and goal positions of each object.

Note that this kind of parametric variation, which we introduce for each task, essentially represents
the entirety of the task distribution for previous meta-RL evaluations [17, 40], which test on single
tasks (e.g., running towards a goal) with parametric variability (e.g., variation in the goal position).
Our full task distribution is therefore substantially broader, since it includes this parametric variability
for each of the 50 tasks.
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To provide shared structure, the 50 environments require the same robotic arm to interact with
different objects, with different shapes, joints, and connectivity. The tasks themselves require the
robot to execute a combination of reaching, pushing, and grasping, depending on the task. By
recombining these basic behavioral building blocks with a variety of objects with different shapes
and articulation properties, we can create a wide range of manipulation tasks. For example, the open
door task involves pushing or grasping an object with a revolute joint, while the open drawer task
requires pushing or grasping an object with a sliding joint. More complex tasks require a combination
of these building blocks, which must be executed in the right order. We visualize all of the tasks in
Meta-World in Figure 1, and include a description of all tasks in Appendix B.

All of the tasks are implemented in the MuJoCo physics engine [54], which enables fast simulation
of physical contact. To make the interface simple and accessible, we base our suite on the Multiworld
interface [37] and the OpenAI Gym environment interfaces [2], making additions and adaptations of
the suite relatively easy for researchers already familiar with Gym.

4.2 Actions, Observations, and Rewards

In order to represent policies for multiple tasks with one model, the observation and action spaces
must contain significant shared structure across tasks. All of our tasks are performed by a simulated
Sawyer robot, with the action space corresponding to 3D end-effector positions. For all tasks, the
robot must either manipulate one object with a variable goal position, or manipulate two objects with
a fixed goal position. The observation space is represented as a 3-tuple of either the 3D Cartesian
positions of the end-effector, the object, and the goal, or the 3D Cartesian positions of the end-effector,
the first object, and the second object, and is always 9 dimensional.

Designing reward functions for Meta-World requires two major considerations. First, to guarantee
that our tasks are within the reach of current single-task reinforcement learning algorithms, which
is a prerequisite for evaluating multi-task and meta-RL algorithms, we design well-shaped reward
functions for each task that make each of the tasks at least individually solvable. More importantly,
the reward functions must exhibit shared structure across tasks. Critically, even if the reward function
admits the same optimal policy for multiple tasks, varying reward scales or structures can make the
tasks appear completely distinct for the learning algorithm, masking their shared structure and leading
to preferences for tasks with high-magnitude rewards [23]. Accordingly, we adopt a structured,
multi-component reward function for all tasks, which leads to effective policy learning for each of
the task components. For instance, in a task that involves a combination of reaching, grasping, and
placing an object, let o ∈ R3 be the object position, where o = (ox, oy, oz), h ∈ R3 be the position
of the robot’s gripper, ztarget ∈ R be the target height of lifting the object, and g ∈ R3 be goal position.
With the above definition, the multi-component reward function R is the additive combination of a
reaching reward Rreach, a grasping reward Rgrasp and a placing reward Rplace, or subsets thereof for
simpler tasks that only involve reaching and/or pushing. With this design, the reward functions across
all tasks have similar magnitude and conform to similar structure, as desired. The full form of the
reward function and a list of all task rewards is provided in Appendix C.

4.3 Evaluation Protocol

With the goal of providing a challenging benchmark to facilitate progress in multi-task RL and
meta-RL, we design an evaluation protocol with varying levels of difficulty, ranging from the level
of current goal-centric meta-RL benchmarks to a setting where methods must learn distinctly new,
challenging manipulation tasks based on diverse experience across 45 tasks. We hence divide our
evaluation into five categories, which we describe next. We then detail our evaluation criteria.

Meta-Learning 1 (ML1): Few-shot adaptation to goal variation within one task. The simplest
evaluation aims to verify that previous meta-RL algorithms can adapt to new object or goal con-
figurations on only one type of task. ML1 uses single Meta-World Tasks, with the meta-training
“tasks” corresponding to 50 random initial object and goal positions, and meta-testing on 10 held-out
positions. This resembles the evaluations in prior works [17, 40]. We evaluate algorithms on three
individual tasks from Meta-World: reaching, pushing, and pick and place, where the variation is over
reaching position or goal object position. The goal positions are not provided in the observation,
forcing meta-RL algorithms to adapt to the goal through trial-and-error.
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Figure 3: Visualization of three of our multi-task and meta-learning evaluation protocols, ranging from within
task adaptation in ML1, to multi-task training across 10 distinct task families in MT10, to adapting to new tasks
in ML10. Our most challenging evaluation mode ML45 is shown in Figure 1.

Multi-Task 10, Multi-Task 50 (MT10, MT50): Learning one multi-task policy that generalizes
to 10 and 50 training tasks. A first step towards adapting quickly to distinctly new tasks is the
ability to train a single policy that can solve multiple distinct training tasks. The multi-task evaluation
in Meta-World tests the ability to learn multiple tasks at once, without accounting for generalization to
new tasks. The MT10 evaluation uses 10 tasks: reach, push, pick and place, open door, open drawer,
close drawer, press button top-down, insert peg side, open window, and open box. The larger MT50
evaluation uses all 50 Meta-World tasks. The policy is provided with a one-hot vector indicating the
current task. The positions of objects and goal positions are fixed in all tasks in this evaluation, so as
to focus on acquiring the distinct skills, rather than generalization and robustness.

Meta-Learning 10, Meta-Learning 45 (ML10, ML45): Few-shot adaptation to new test tasks
with 10 and 50 meta-training tasks. With the objective to test generalization to new tasks, we hold
out 5 tasks and meta-train policies on 10 and 45 tasks. We randomize object and goals positions and
intentionally select training tasks with structural similarity to the test tasks. Task IDs are not provided
as input, requiring a meta-RL algorithm to identify the tasks from experience.

Success metrics. Since values of reward are not directly indicative how successful a policy is, we
define an interpretable success metric for each task, which will be used as the evaluation criterion for
all of the above evaluation settings. Since all of our tasks involve manipulating one or more objects
into a goal configuration, this success metric is based on the distance between the task-relevant object
and its final goal pose, i.e. ‖o− g‖2 < ε, where ε is a small distance threshold such as 5 cm. For the
complete list of success metrics and thresholds for each task, see Appendix C.

5 Experimental Results and Analysis
The first, most basic goal of our experiments is to verify that each of the 50 presented tasks are indeed
solveable by existing single-task reinforcement learning algorithms. We provide this verification
in Appendix D. Beyond verifying the individual tasks, the goals of our experiments are to study
the following questions: (1) can existing state-of-the-art meta-learning algorithms quickly learn
qualitatively new tasks when meta-trained on a sufficiently broad, yet structured task distribution,
and (2) how do different multi-task and meta-learning algorithms compare in this setting? To answer
these questions, we evaluate various multi-task and meta-learning algorithms on the Meta-World
benchmark. We include the training curves of all evaluations in Figure 8 in the Appendix E. Videos
of the tasks and evaluations, along with all source code, are on the project webpage3.

In the multi-task evaluation, we evaluate the following RL algorithms: multi-task proximal policy
optimization (PPO) [50]: a policy gradient algorithm adapted to the multi-task setting by providing
the one-hot task ID as input, multi-task trust region policy optimization (TRPO) [49]: an on-
policy policy gradient algorithm adapted to the multi-task setting using the one-hot task ID as input,
multi-task soft actor-critic (SAC) [22]: an off-policy actor-critic algorithm adapted to the multi-task
setting using the one-hot task ID as input, multi-task multi-head soft actor-critic (SAC) [22]: an

3Videos are on the project webpage, at meta-world.github.io
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off-policy actor-critic algorithm similar to multi-task SAC but using a multi-head policy with one
head per task, and an on-policy version of task embeddings (TE) [25]: a multi-task reinforcement
learning algorithm that parameterizes the learned policies via shared skill embedding space. For the
meta-RL evaluation, we study three algorithms: RL2 [13, 55]: an on-policy meta-RL algorithm that
corresponds to training a LSTM network with hidden states maintained across episodes within a task
and trained with PPO, model-agnostic meta-learning (MAML) [17, 43]: an on-policy gradient-
based meta-RL algorithm that embeds policy gradient steps into the meta-optimization, and is trained
with PPO, and probabilistic embeddings for actor-critic RL (PEARL) [40]: an off-policy actor-
critic meta-RL algorithm, which learns to encode experience into a probabilistic embedding of the
task that is fed to the actor and the critic.

Figure 4: Comparison on our simplest
meta-RL evaluation, ML1.

We show results of the simplest meta-learning evaluation mode,
ML1, in Figure 7. We find that there is room for improvement
even in this very simple setting. Next, we look at results of
multi-task learning across distinct tasks, starting with MT10
in the top left of Figure 5 and in Table 1. We find that multi-
task multi-head SAC is able to learn the MT10 task suite well,
achieving around 88% success rate averaged across tasks, while
multi-task SAC that has a single head can only solve around
40% of the tasks, indicating that adopting a multi-head archi-
tecture can greatly improve multi-task learning performance.
On-policy methods such as task embeddings, multi-task PPO,
and multi-task TRPO perform significantly worse, achieving less than 30% success across tasks.
However, as we scale to 50 distinct tasks with MT50 (Figure 5, bottom left, and average results in
Table 1), we find that multi-task multi-head SAC achieves only 35.85% average performance across
the 50 tasks, while the other four methods have less than 30% success rates, indicating significant
room for improvement.

Finally, we study the ML10 and ML45 meta-learning benchmarks, which require learning the meta-
training tasks and generalizing to new meta-test tasks with small amounts of experience. From
Figure 5 and Table 1, we find that the prior meta-RL methods, MAML and RL2 reach 36% and
10% success on ML10 test tasks, while PEARL is unable to generalize to new tasks on ML10. On
ML45, PEARL manages to accomplish around 30% success rate on the test set, which suggests that
having more meta-training tasks is conducive for PEARL to learn the underlying shared structure
and adapt to unseen tasks. MAML and RL2 solve around 20% of the meta-test tasks, potentially due
to the additional optimization challenges in this regime. Note that, on both ML10 and ML45, the
meta-training performance of all methods also has considerable room for improvement, suggesting
that optimization challenges are generally more severe in the meta-learning setting. The fact that some
methods nonetheless exhibit meaningful generalization suggests that the ML10 and ML45 benchmarks
are solvable, but challenging for current methods, leaving considerable room for improvement in
future work.

Methods MT10 MT50

Multi-task PPO 25% 8.98%
Multi-task TRPO 29% 22.86%
Task embeddings 30% 15.31%
Multi-task SAC 39.5% 28.83%

Multi-task multi-head SAC 88% 35.85%

Methods
ML10 ML45

meta-train meta-test meta-train meta-test

MAML 25% 36% 21.14% 23.93%
RL2 50% 10% 43.18% 20%

PEARL 42.78% 0% 11.36% 30%

Table 1: Average success rates over all tasks for MT10, MT50, ML10, and ML45. The best performance in each
benchmark is bolden. For MT10 and MT50, we show the average training success rate and multi-task multi-head
SAC outperforms other methods. For ML10 and ML45, we show the meta-train and meta-test success rates. RL2

achieves best meta-train performance in ML10 and ML45, while MAML and PEARL get the best generalization
performance in ML10 and ML45 meta-test tasks respectively.

6 Conclusion and Directions for Future Work
We proposed an open-source benchmark for meta-reinforcement learning and multi-task learning,
which consists of a large number of simulated robotic manipulation tasks. Unlike previous evaluation
benchmarks in meta-RL, our benchmark specifically emphasizes generalization to distinctly new
tasks, not just in terms of parametric variation in goals, but completely new objects and interaction
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Figure 5: Full quantitative results on MT10, MT50, ML10, and ML45. Note that, even on the challenging
ML10 and ML45 benchmarks, current methods already exhibit some degree of generalization, but meta-
training performance leaves considerable room for improvement, suggesting that future work could attain better
performance on these benchmarks. We also show the average success rates for all benchmarks in Table 1.

scenarios. While meta-RL can in principle make it feasible for agents to acquire new skills more
quickly by leveraging past experience, previous evaluation benchmarks utilize very narrow task
distributions, making it difficult to understand the degree to which meta-RL actually enables this
kind of generalization. The aim of our benchmark is to make it possible to develop new meta-RL
algorithms that actually exhibit this sort of generalization. Our experiments show that current meta-
RL methods in fact cannot yet generalize effectively to entirely new tasks and do not even learn
the meta-training tasks effectively when meta-trained across multiple distinct tasks. This suggests a
number of directions for future work, which we describe below.

Future directions for algorithm design. The main conclusion from our experimental evaluation
with our proposed benchmark is that current meta-RL algorithms generally struggle in settings where
the meta-training tasks are highly diverse. This issue mirrors the challenges observed in multi-task
RL, which is also challenging with our task suite, and has been observed to require considerable
additional algorithmic development to attain good results in prior work [39, 44, 14]. A number
of recent works have studied algorithmic improvements in the area of multi-task reinforcement
learning, as well as potential explanations for the difficulty of RL in the multi-task setting [23, 48].
Incorporating some of these methods into meta-RL, as well as developing new techniques to enable
meta-RL algorithms to train on broader task distributions, would be a promising direction for future
work to enable meta-RL methods to generalize effectively across diverse tasks, and our proposed
benchmark suite can provide future algorithms development with a useful gauge of progress towards
the eventual goal of broad task generalization.

Future extensions of the benchmark. While the presented benchmark is significantly broader
and more challenging than existing evaluations of meta-reinforcement learning algorithms, there
are a number of extensions to the benchmark that would continue to improve and expand upon its
applicability to realistic robotics tasks. We leave the discussion to Appendix A.
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A Future Extensions of the Benchmark

First, in many situations, the poses of objects are not directly accessible to a robot in the real world.
Hence, one interesting and important direction for future work is to consider image observations and
sparse rewards. Sparse rewards can be derived already using the success metrics, while support for
image rendering is already supported by the code. However, for meta-learning algorithms, special care
needs to be taken to ensure that the task cannot be inferred directly from the image, else meta-learning
algorithms will memorize the training tasks rather than learning to adapt. Another natural extension
would be to consider including a breadth of compositional long-horizon tasks, where there exist
combinatorial numbers of tasks. Such tasks would be a straightforward extension, and provide the
possibility to include many more tasks with shared structure. Another challenge when deploying
robot learning and meta-learning algorithms is the manual effort of resetting the environment. To
simulate this case, one simple extension of the benchmark is to significantly reduce the frequency of
resets available to the robot while learning. Lastly, in many real-world situations, the tasks are not
available all at once. To reflect this challenge in the benchmark, we can add an evaluation protocol
that matches that of online meta-learning problem statements [19]. We leave these directions for
future work, either to be done by ourselves or in the form of open-source contributions. To summarize,
we believe that the proposed form of the task suite represents a significant step towards evaluating
multi-task and meta-learning algorithms on diverse robotic manipulation problems that will pave the
way for future research in these areas.

B Task Descriptions

In Table 2, we include a description of each of the 50 Meta-World tasks.

C Task Rewards and Success Metrics

The form of the reward function is shared across tasks. In particular, the multi-component reward
function R is a combination of a reaching reward Rreach, a grasping reward Rgrasp and a placing
reward Rplace as follows:

R = Rreach +Rgrasp +Rplace

= −‖h− o‖2︸ ︷︷ ︸
Rreach

+ I‖h−o‖2<ε · c1 ·min{oz, ztarget}︸ ︷︷ ︸
Rgrasp

+ I|oz−ztarget|<ε · c2 · exp{‖o− g‖
2
2/c3}︸ ︷︷ ︸

Rplace

where ε, c1, c2, c3 are constant for all tasks. For tasks that involve reaching and pushing, the reward
R can be formed as a combination of a reaching reward Rreach and a pushing reward Rpush:

R = Rreach +Rpush

= −‖h− o‖2︸ ︷︷ ︸
Rreach

+ I‖h−o‖2<ε · c2 · exp{‖o− g‖
2
2/c3︸ ︷︷ ︸

Rpush

}

With this design, the reward functions across all tasks have similar magnitude and conform to similar
structure, as desired. In Table 3, we include a complete list of reward functions of each of the
50 Meta-World tasks. In Table 4, we include a complete list of success metrics of each of the 50
Meta-World tasks.

D Benchmark Verification with Single-Task Learning

In this section, we aim to verify that each of the benchmark tasks are individually solvable provided
enough data. To do so, we consider two state-of-the-art single task reinforcement learning methods,
proximal policy optimization (PPO) [50] and soft actor-critic (SAC) [22]. This evaluation is purely
for validation of the tasks, and not an official evaluation protocol of the benchmark. Details of the
hyperparameters are provided in Appendix F. The results of this experiment are illustrated in Figure 6.
We indeed find that SAC can learn to perform all of the 50 tasks to some degree, while PPO can solve
a large majority of the tasks.
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Task Description

turn on faucet Rotate the faucet counter-clockwise. Randomize faucet positions
sweep Sweep a puck off the table. Randomize puck positions
assemble nut Pick up a nut and place it onto a peg. Randomize nut and peg positions
turn off faucet Rotate the faucet clockwise. Randomize faucet positions
push Push the puck to a goal. Randomize puck and goal positions
pull lever Pull a lever down 90 degrees. Randomize lever positions
turn dial Rotate a dial 180 degrees. Randomize dial positions
push with stick Grasp a stick and push a box using the stick. Randomize stick positions.
get coffee Push a button on the coffee machine. Randomize the position of the coffee machine
pull handle side Pull a handle up sideways. Randomize the handle positions
basketball Dunk the basketball into the basket. Randomize basketball and basket positions
pull with stick Grasp a stick and pull a box with the stick. Randomize stick positions
sweep into hole Sweep a puck into a hole. Randomize puck positions
disassemble nut pick a nut out of the a peg. Randomize the nut positions
place onto shelf pick and place a puck onto a shelf. Randomize puck and shelf positions
push mug Push a mug under a coffee machine. Randomize the mug and the machine positions
press handle side Press a handle down sideways. Randomize the handle positions
hammer Hammer a screw on the wall. Randomize the hammer and the screw positions
slide plate Slide a plate into a cabinet. Randomize the plate and cabinet positions
slide plate side Slide a plate into a cabinet sideways. Randomize the plate and cabinet positions
press button wall Bypass a wall and press a button. Randomize the button positions
press handle Press a handle down. Randomize the handle positions
pull handle Pull a handle up. Randomize the handle positions
soccer Kick a soccer into the goal. Randomize the soccer and goal positions
retrieve plate side Get a plate from the cabinet sideways. Randomize plate and cabinet positions
retrieve plate Get a plate from the cabinet. Randomize plate and cabinet positions
close drawer Push and close a drawer. Randomize the drawer positions
press button top Press a button from the top. Randomize button positions
reach reach a goal position. Randomize the goal positions
press button top wall Bypass a wall and press a button from the top. Randomize button positions
reach with wall Bypass a wall and reach a goal. Randomize goal positions
insert peg side Insert a peg sideways. Randomize peg and goal positions
pull Pull a puck to a goal. Randomize puck and goal positions
push with wall Bypass a wall and push a puck to a goal. Randomize puck and goal positions
pick out of hole Pick up a puck from a hole. Randomize puck and goal positions
pick&place w/ wall Pick a puck, bypass a wall and place the puck. Randomize puck and goal positions
press button Press a button. Randomize button positions
pick&place Pick and place a puck to a goal. Randomize puck and goal positions
pull mug Pull a mug from a coffee machine. Randomize the mug and the machine positions
unplug peg Unplug a peg sideways. Randomize peg positions
close window Push and close a window. Randomize window positions
open window Push and open a window. Randomize window positions
open door Open a door with a revolving joint. Randomize door positions
close door Close a door with a revolvinig joint. Randomize door positions
open drawer Open a drawer. Randomize drawer positions
insert hand Insert the gripper into a hole.
close box Grasp the cover and close the box with it. Randomize the cover and box positions
lock door Lock the door by rotating the lock clockwise. Randomize door positions
unlock door Unlock the door by rotating the lock counter-clockwise. Randomize door positions
pick bin Grasp the puck from one bin and place it into another bin. Randomize puck positions

Table 2: A list of all of the Meta-World tasks and a description of each task.

E Learning curves

In evaluating meta-learning algorithms, we care not just about performance but also about efficiency,
i.e. the amount of data required by the meta-training process. While the adaptation process for
all algorithms is extremely efficient, requiring only 10 trajectories, the meta-learning process can
be very inefficient, particularly for on-policy algorithms such as MAML, RL2. In Figure 7, we
show full learning curves of the three meta-learning methods on ML1. In Figure 8, we show full

13



Figure 6: Performance of independent policies trained on individual tasks using soft actor-critic
(SAC) and proximal policy optimization (PPO). We verify that SAC can solve all of the tasks and
PPO can also solve most of the tasks.

learning curves of MT10, ML10, MT50 and ML45. The MT10 and MT50 learning curves show
the efficiency of multi-task learning, a critical evaluation metric, since sample efficiency gains are a
primary motivation for using multi-task learning. Unsurprisingly, we find that off-policy algorithms
such as soft actor-critic and PEARL are able to learn with substantially less data than on-policy
algorithms.

Figure 7: Comparison of PEARL, MAML, and RL2 learning curves on the simplest evaluation,
ML1, where the methods need to adapt quickly to new object and goal positions within the one
meta-training task.

F Hyperparameter Details

In this section, we provide hyperparameter values for each of the methods in our experimental
evaluation.
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Figure 8: Learning curves of all methods on MT10, ML10, MT50, and ML45 benchmarks. Y-axis
represents success rate averaged over tasks in percentage (%). The dashed lines represent asymptotic
performances. Off-policy algorithms such as multi-task SAC and PEARL learn much more efficiently
than off-policy methods, though PEARL underperforms MAML and RL2.

F.1 Single Task SAC

Hyperparameter Hyperparameter values
batch size 128
non-linearity ReLU
policy initialization standard Gaussian
exploration parameters run a uniform exploration policy 1000 steps
# of samples / # of train steps per iteration 1 env step / 1 training step
policy learning rate 3e-4
Q function learning rate 3e-4
optimizer Adam
discount .99
horizon 150
reward scale 1.0
temperature learned

F.2 Single Task PPO

Hyperparameter Hyperparameter values
non-linearity ReLU
batch size 4096
policy initial standard deviation 2.
entropy regularization coefficient 1e-3
baseline linear feature baseline
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F.3 Multi-Task SAC

Hyperparameter Hyperparameter values
network architecture feedforward network
network size three fully connected layers with 400 units
batch size 128× number_of_tasks
non-linearity ReLU
policy initialization standard Gaussian
exploration parameters run a uniform exploration policy 1000 steps
# of samples / # of train steps per iteration number_of_tasks env steps / 1 training step
policy learning rate 3e-4
Q function learning rate 3e-4
optimizer Adam
discount .99
horizon 150
reward scale 1.0
temperature learned and disentangled with tasks

F.4 Multi-Task Multi-Headed SAC

Hyperparameter Hyperparameter values
network architecture multi-head (one head per task)
network size three fully connected layers with 400 units
batch size 128× number_of_tasks
non-linearity ReLU
policy initialization standard Gaussian
exploration parameters run a uniform exploration policy 1000 steps
# of samples / # of train steps per iteration number_of_tasks env steps / 1 training step
policy learning rate 3e-4
Q function learning rate 3e-4
optimizer Adam
discount .99
horizon 150
reward scale 1.0
temperature learned and disentangled with tasks

F.5 Multi-Task PPO

Hyperparameter Hyperparameter values
batch size # of tasks * 10 * 150
policy initial standard deviation 2.
entropy regularization coefficient 0.002
baseline linear feature baseline fit with observations and returns

F.6 Multi-Task TRPO

Hyperparameter Hyperparameter values
batch size # of tasks * 10 * 150
policy initial standard deviation 2.
step size 0.01
baseline linear feature baseline fit with observations and returns

16



F.7 Task Embeddings

Hyperparameter Hyperparameter values
nonlinearity tanh
batch size # of tasks * 10 * 150
latent dimension 6
inference window length 20
embedding maximum standard deviation 2.
baseline Gaussian MLP, fit with observations, latent variables and returns

F.8 PEARL

Hyperparameter Hyperparameter values
policy learning rate 3e-4
Q function learning rate 3e-4
discount .99
horizon 150
# of samples / # of train steps per iteration 22500 env steps / 4,000 training steps
KL loss weight .1
nonlinearity relu

F.9 RL2

Hyperparameter Hyperparameter values
nonlinearity tanh
policy initialization Gaussian with σ = 2.0
baseline linear-fit with polynomial features (n = 2) of observation and time step
meta batch size 40
# roll-outs per meta task 10
horizon 150
optimizer Adam
learning rate 1e-3
discount .99
batch size # of tasks * 10 * 150

F.10 MAML

Hyperparameter Hyperparameter values
nonlinearity tanh
meta batch size 20
# roll-outs per meta task 10
inner gradient step learning rate 0.05
discount .99

17



Task Reward

turn on faucet −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
sweep −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pick out of hole −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
turn off faucet −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
push with stick −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
get coffee −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pull handle side −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
basketball −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
pull with stick −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
sweep into hole −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
disassemble nut −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
assemble nut −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
place onto shelf −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
push mug −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
press handle side −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
hammer −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
slide plate −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
slide plate side −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
press button wall −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
press handle −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pull handle −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
soccer −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
retrieve plate side −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
retrieve plate −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
close drawer −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
reach 1000 · exp{‖h− g‖22/0.01}
press button top wall −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
reach with wall 1000 · exp{‖h− g‖22/0.01}
insert peg side −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
push −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
push with wall −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pick&place w/ wall −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
press button −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
press button top −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pick&place −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
pull −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pull mug −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
unplug peg −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
turn dial −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pull lever −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
close window −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
open window −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
open door −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
close door −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
open drawer −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
insert hand 1000 · exp{‖h− g‖22/0.01}
close box −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}
lock door −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
unlock door −‖h− o‖2 + I‖h−o‖2<0.05 · 1000 · exp{‖h− g‖22/0.01}
pick bin −‖h− o‖2 + I‖h−o‖2<0.05 · 100 ·min{oz, ztarget}+ I|oz−ztarget|<0.05 · 1000 · exp{‖h− g‖22/0.01}

Table 3: A list of reward functions used for each of the Meta-World tasks.
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Task Success Metric

turn on faucet I‖o−g‖2<0.05

sweep I‖o−g‖2<0.05

pick out of hole I‖o−g‖2<0.08

turn off faucet I‖o−g‖2<0.05

push I‖o−g‖2<0.07

push with stick I‖o−g‖2<0.08

get coffee I‖o−g‖2<0.02

pull handle side I‖o−g‖2<0.04

basketball I‖o−g‖2<0.08

pull with stick I‖o−g‖2<0.08

sweep into hole I‖o−g‖2<0.05

disassemble nut I‖o−g‖2<0.08

assemble nut I‖o−g‖2<0.08

place onto shelf I‖o−g‖2<0.08

push mug I‖o−g‖2<0.07

press handle side I‖o−g‖2<0.04

hammer I‖o−g‖2<0.05

slide plate I‖o−g‖2<0.07

slide plate side I‖o−g‖2<0.07

press button wall I‖o−g‖2<0.02

press handle I‖o−g‖2<0.02

pull handle I‖o−g‖2<0.04

soccer I‖o−g‖2<0.07

retrieve plate side I‖o−g‖2<0.07

retrieve plate I‖o−g‖2<0.07

close drawer I‖o−g‖2<0.08

reach I‖o−g‖2<0.05

press button top wall I‖o−g‖2<0.02

reach with wall I‖o−g‖2<0.05

insert peg side I‖o−g‖2<0.07

push with wall I‖o−g‖2<0.07

pick&place w/ wall I‖o−g‖2<0.07

press button I‖o−g‖2<0.02

press button top I‖o−g‖2<0.02

pick&place I‖o−g‖2<0.07

pull I‖o−g‖2<0.07

pull mug I‖o−g‖2<0.07

unplug peg I‖o−g‖2<0.07

turn dial I‖o−g‖2<0.03

pull lever I‖o−g‖2<0.05

close window I‖o−g‖2<0.05

open window I‖o−g‖2<0.05

open door I‖o−g‖2<0.08

close door I‖o−g‖2<0.08

open drawer I‖o−g‖2<0.08

insert hand I‖o−g‖2<0.05

close box I‖o−g‖2<0.08

lock door I‖o−g‖2<0.05

unlock door I‖o−g‖2<0.05

pick bin I‖o−g‖2<0.08

Table 4: A list of success metrics used for each of the Meta-World tasks. All units are in meters.
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