
Understanding and Robustifying
Differentiable Architecture Search

Arber Zela
University of Freiburg

zelaa@cs.uni-freiburg.de

Thomas Elsken
Bosch Center for Artificial Intelligence

and University of Freiburg
Thomas.Elsken@de.bosch.com

Yassine Marrakchi
University of Freiburg

marrakch@cs.uni-freiburg.de

Tonmoy Saikia
University of Freiburg

saikiat@cs.uni-freiburg.de

Thomas Brox
University of Freiburg

brox@cs.uni-freiburg.de

Frank Hutter
University of Freiburg and

Bosch Center for Artificial Intelligence
fh@cs.uni-freiburg.de

Abstract

Differentiable Architecture Search (DARTS) has attracted a lot of attention due to
its simplicity and small search costs. However, DARTS does not work robustly for
new problems: we identify a wide range of search spaces for which DARTS yields
degenerate architectures with very poor test performance. We show that, while
DARTS successfully minimizes validation loss, the found solutions generalize
poorly when they coincide with high validation loss curvature. By adding one
of various types of regularization we can robustify DARTS to find solutions with
smaller Hessian spectrum and with better generalization properties. Based on these
observations we propose simple variations of DARTS with early stopping and
adaptive regularization that perform substantially mode robustly. Our observations
are robust across five search spaces on three image classification tasks.

1 Introduction

Neural Architecture Search (NAS), the process of automatically designing neural network archi-
tectures, has recently attracted attention by achieving state-of-the-art performance on a variety of
tasks [Zoph and Le, 2017, Real et al., 2019]. Differentiable architecture search (DARTS) [Liu et al.,
2019] significantly improved the efficiency of NAS over prior work, reducing its costs to the same
order of magnitude as training a single neural network. This expanded the scope of NAS substantially,
allowing it to also apply on more expensive problems, such as semantic segmentation [Chenxi et al.,
2019] or disparity estimation [Saikia et al., 2019].

However, several researchers have also reported DARTS to not work well, in some cases even no
better than random search [Li and Talwalkar, 2019, Sciuto et al., 2019]. Why is this? How can these
seemingly contradicting results be explained? The overall goal of this paper is to understand and
overcome such failure modes of DARTS. Specifically, we make the following contributions:

1. We identify a wide range of search spaces in which standard DARTS yields degenerate architec-
tures with poor test performance (Section 2.1)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

c_{k-2}

0

skip_connect

c_{k-1} skip_connect
1

skip_connect

2

skip_connect

3
skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(a) Space 1

c_{k-2}

0

skip_connect
2skip_connect

c_{k-1}
skip_connect

1skip_connect

skip_connect

skip_connect

3skip_connect
c_{k}

sep_conv_3x3

(b) Space 2

c_{k-2} 0
skip_connect

1
skip_connect

2skip_connect

3
skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(c) Space 3

c_{k-2}

0
sep_conv_3x3

1

sep_conv_3x3
2noise

3
noise

c_{k-1}

sep_conv_3x3

noise

noise
c_{k}

noise

(d) Space 4

Figure 1: The poor cells standard DARTS finds on spaces S1-S4. For all spaces, DARTS chooses
mostly parameter-less operations (skip connection) or even the harmful Noise operation. Here, we
show the normal cells; see Figure 17 for the corresponding reduction cells.

2. By computing the eigenvalues of the Hessian matrix of the validation loss with respect to the
architectural parameters, we show that there is a strong correlation between its largest eigenvalue
and the architecture’s generalization error (Section 2.2).

3. We show that, related to previous work on sharp/flat local minima, regularizing the inner objective
of DARTS allows it to find solutions with smaller Hessian spectrum and better generalization
properties (Section 2.3).

4. We propose simple variations of DARTS that stop early and adadaptively set the regularizer based
on the eigenvalue spectrum (Section 3).

Our findings are robust across five different search spaces evaluated on three different image recog-
nition benchmarks each. They consolidate the findings of the various results in the literature and
lead to a substantially more robust version of DARTS. We provide our implementation and scripts to
facilitate reproducibility1.

2 Failure modes and overcoming them by regularization

We start with four search spaces similar to the CIFAR-10 search space used in the original DARTS
paper [Liu et al.] but simpler, and evaluated across three different datasets (CIFAR-10, CIFAR-100
and SVHN). These search spaces use the same macro architecture as DARTS, consisting of normal
and reduction cells, but only allow a reduced set of operators for the cell search space (see Appendix
A for more details on how DARTS works and Appendix B for more details on these search spaces).

2.1 When DARTS fails

0 10 20 30 40 50
Search epoch

0

1

2

3

4

5

6

7

Te
st

 re
gr

et
 (%

)

L2 factor: 0.0003
DARTS test regret
DARTS one-shot val. error
RS-ws test regret

10

20

30

40

50

60

Va
lid

at
io

n
er

ro
r (

%
)

Figure 2: Test regret and validation error of
the one-shot model when running DARTS on
S5 and CIFAR-10. DARTS finds the global
minimum but then starts overfitting the archi-
tectural parameters to the validation set.

We ran DARTS on each of these spaces, using ex-
actly the same setup as Liu et al. [2019]. Figure 1
shows the poor cells DARTS selected on these search
spaces for CIFAR-10 (see Appendix F for analogous
results on the other datasets). Already visually, one
might suspect that the found cells are suboptimal:
the parameter-less skip connections dominate in al-
most all the edges for spaces S1-S3, and for S4 even
the harmful Noise operation was selected for five
out of eight operations. Table 1 confirms the very
poor performance standard DARTS yields for all of
these settings also compared to Random Search with
weight sharing (RS-ws) [Li and Talwalkar, 2019].

Very small search space with known global opti-
mum. Knowing the global minimum has the ad-
vantage that one can benchmark the performance of
algorithms by measuring the regret of chosen points with respect to the known global minimum.
Therefore, we created a small search space S5 only containing a total of 81 possible architectures (see
Appendix B). We then ran DARTS on this search space three times for each dataset and compared
its result to the baseline of RS-ws by Li and Talwalkar [2019]. Figure 2 shows the test regret of the
architectures selected by DARTS (blue) and RS-ws (green) throughout the search. DARTS manages

1 https://github.com/automl/RobustDARTS

2

https://github.com/automl/RobustDARTS

0 10 20 30 40 50
Search epoch

10

15

20

25

30

On
e-

sh
ot

 v
al

id
at

io
n

er
ro

r (
%

)

0 10 20 30 40 50
Search epoch

2

3

4

5

6

7

8

Te
st

 e
rro

r (
%

)

0 10 20 30 40 50
Search epoch

0.2

0.4

0.6

0.8

Do
m

in
an

t E
ig

en
va

lu
e S1

S2
S3
S4

Figure 3: (left) validation error of search model; (middle) test error
of the architectures deemed by DARTS optimal (right) dominant
eigenvalue of∇2

αLvalid throughout DARTS search. Solid line and
shaded areas show mean and standard deviation of 3 independent
runs. All experiments conducted on CIFAR-10.

0.15 0.20 0.25 0.30 0.35 0.40
Average Dominant Eigenvalue

3.0

3.5

4.0

4.5

5.0

5.5

Te
st

 e
rro

r (
%

)

S1 C10 (Average over the EV trajectory)
 Pearson corr. coef.: 0.867, p-value: 0.00000

Figure 4: Correlation be-
tween dominant eigenvalue of
∇2
αLvalid and test error of cor-

responding architectures.

to find an architecture close to the global minimum, but around epoch 40 the test performance deteri-
orates. Note that the one-shot (search model) validation error (dashed red line) does not deteriorate
but rather converges, indicating that the architectural parameters are overfitting to the validation set.
In contrast, RS-ws stays relatively constant throughout the search; when evaluating only the final
architecture found, RS-ws indeed outperforms DARTS.

2.2 Large curvature and generalization performance

One may hypothesize that DARTS performs poorly because its approximate solution of the bi-level
optimization problem by iterative optimization fails, but we actually observe validation errors to
progress nicely: Figure 3 (left) shows that the search model validation error converges in all cases,
even though the cell structures selected here are the ones in Figure 1.

Rather, the architectures DARTS finds do not generalize well. This can be seen in Figure 3 (middle).
There, every 5 epochs, we evaluated the architecture deemed by DARTS to be optimal according to
the α values. Note that whenever evaluating on the test set, we retrain from scratch the architecture
obtained after applying the argmax to the architectural weights α. As one can notice, the architectures
start to degenerate after a certain number of search epochs, similarly to the results shown in Figure 2.
We hypothesized that this might be related to the phenomenon of sharp local minima [Hochreiter
and Schmidhuber, 1997, Keskar et al., 2016, Chaudhari et al., 2017, Yao et al., 2018], which have
also been observed in the hyperparameter space [Nguyen et al., 2018]. To test this hypothesis, we
computed the full Hessian ∇2

αLvalid of the validation loss w.r.t. the architectural parameters on a
randomly sampled mini-batch. Figure 3 (right) shows that the dominant eigenvalue λαmax (which
serves as a proxy for the sharpness) indeed increases in standard DARTS, along with the test error
(middle) of the final architectures, while the validation error still decreases (left). We also studied
the correlation between λαmax and test error more directly, by measuring these two quantities for
24 different architectures (obtained via standard DARTS and the regularized versions we discuss in
Section ??). For the example of space S1 on CIFAR-10, Figure 4 shows that λαmax indeed strongly
correlates with test error (with a Pearson correlation coefficient of 0.867).

2.3 Regularization improves generalization

In our bi-level optimization setting, the outer variables’ trajectory depends directly on the inner
optimization procedure. Therefore, modifying the landscape of the inner objective Ltrain might
potentially redirect the outer variables to better areas of the architectural space and keep the dominant
eigenvalue low. We investigate two ways of regularizing the DARTS search procedure, namely via
data augmentation and L2 regularization in the inner objective. We highlight that we do not alter the
regularization of the final training and evaluation phase, but solely that of the DARTS search phase.
Indeed, we find that a stronger regularization factor during search leads to a better generalization of
the selected architectures as shown in Figure 5 (see also Figure 10 in the appendix). We also observe
the same pattern in the tasks of disparity estimation (see Appendix D) and language modelling (see
Appendix E). As suspected, also the architectural parameters stay and end up in flatter areas of the
architecture landscape, as shown in Figure 8 (more details in Appendix C.2).

3

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

3

4

5

6

7

Te
st

 e
rro

r (
%

)

C10
S1
S2
S3
S4

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

22

24

26

28

30

C100

0.0003 0.0009 0.0027 0.0081 0.0243
L2 factor

2

3

4

5

6

7

SVHN

Figure 5: Effect of more L2 regularization during the DARTS search phase, on the test performance
of the architectures discovered by DARTS and DARTS-ES. The results are presented for each of
the search spaces S1-S4 and for CIFAR-10, CIFAR-100 and SVHN. The solid lines correspond to
DARTS, the dashed lines to DARTS-ES.

2.4 Further analysis

Why does DARTS get attracted to these bad regions in the architecture space? This might arise
potentially from some premature convergence in the weights’ space, supposing that the landscape
of the training loss Ltrain does not change significantly after each α update. In a non-convex
landscape, this minimizer w(1) of Ltrain might not necessarily be the one that also minimizes Lvalid
(see Franceschi et al. [2018]), i.e. there might exist another w(2) ∈ argminw Ltrain(α,w) such
that Lvalid(α,w(2)) < Lvalid(α,w(1)). More concretely, the parameterless operations such as skip
connections might get higher weight especially in the beginning of search due to the easiness of
gradients to flow through these paths during training. Regularizing the inner objective by adding a
convex term or perturbing the inputs will eventually redirect also the gradients flowing backwards,
and consecutively also the attention DARTS focuses on different architectural operations.

0.0 0.2 0.4 0.6
Max. Drop probability

0

2

4

6

8

10

Va
lid

at
io

n
ac

cu
ra

cy
 d

ro
p

(%
)

C10-S1
C10-S2
C10-S3
C10-S4
C100-S1
SVHN-S1

Figure 6: Drop in accuracy after
discretizing the search model. Ex-
ample of some of the settings.

0.0 0.5 1.0 1.5 2.0
Dominant Eigenvalue

0

10

20

30

Va
lid

at
io

n
ac

cu
ra

cy
 d

ro
p

(%
)

Eigenvalues vs. Accuracy Drop
 Spearman corr. coef.: 0.736

Figure 7: Correlation between
|Ltest(α∗) − Lvalid(αd)| and the
loss curvature.

Now we provide further evidence on the relation between the
sharpness of minimas and the generalization error. As it is well
known in the settings of large vs. small batch training [Yao et al.,
2018, Keskar et al., 2016, Hochreiter and Schmidhuber, 1997],
one potential hypothesis explaining the relationship between
the sharpness of minimas and generalization properties of a
neural network, is based on the fact that the training function is
much more sensitive at a sharp minimizer, e.g. to the variations
in the input data. This may lead to relatively large accuracy
drop even from small discrepancies between training and test
data. Analogously, we conjectured that this also holds for α
rather thanw and therefore we investigated the relation between
large EV (w.r.t. α) - as a proxy for sharp minima - and gener-
alization performance. Similarly, sharp minima would also be
much more sensitive to variations in the architecture, which is
relevant since DARTS discretizes (by taking the argmax over
operations in each edge) the optimal α∗ after search, resulting
in αd somewhere in the vicinity of α∗. In the case of a sharp
minimum α∗, αd might already have a larger objective function
value, while in the case of a flat minimum, αd is expected to
have an objective value similar to α∗.

To make this more crisp, we conducted the following experi-
ment: after the DARTS search has finished, we discretize the
architecture and evaluate it with the search model’s weights,
rather than retraining, and compare the performance to the one-
shot model’s performance, |Ltest(α∗)−Lvalid(αd)|. Figure 6 shows the drop in performance due
to this discretization step for some of the settings: this drop is much larger when there is little
regularization (drop prob = 0), resulting in large EVs (see Figure 14), corresponding to a sharp

4

minmum. Figure 7 shows the relationship between the dominant eigenvalues at the end of search and
the drop in accuracy when doing the discretization step as described above.

3 Architecture search early stopping and adaptive regularization

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar10
L2=0.0003
L2=0.0009
L2=0.0027
L2=0.0081
L2=0.0243

Figure 8: Local average of
the dominant eigenvalue λαmax
over the course of DARTS
search. Markers denote the
point where the search proce-
dure stops in DARTS-ES.

Early stopping based on∇2
αLvalid. We just observed that (1) the

test error seems to be positively correlated (also see Figure 4 in the
appendix) with the largest eigenvalue λαmax of the Hessian matrix
of the validation loss ∇2

αLvalid, and that (2) λαmax increases over
time. A simple strategy to avoid test errors from increasing would
therefore be to stop the optimization when λαmax increases too much.
To implement this idea, we propose a simple heuristic that worked
off-the-shelf without the need for any tuning. Let λ

α

max(i) denote the
value of λαmax smoothed over k = 5 epochs around i; then, we stop
if λ

α

max(i − k)/λ
α

max(i) < 0.75 and return the architecture from
epoch i− k. By this early stopping heuristic, we do not only avoid
exploding eigenvalues, which are correlated with poor generaliza-
tion, but also shorten the time of the search. Figure 8 visualizes the
eigenvalue trajectory and the early stopping. Table 1 (DARTS-ES)
shows the results for running DARTS with this early stopping crite-
rion across S1-S4 and all three image classification datasets. We also
apply this procedure when altering the regularization factors. The
corresponding test errors are shown in Figures 5 and 10 (dashed lines). Early stopping significantly
improved DARTS for most settings without ever harming it.

Table 1: Performance of architectures found by DARTS (-ES
/ -ADA) vs. RandomNAS with weight sharing. For each of
the settings we repeat the search 3 times and report the mean
± std of the 3 found architectures retrained from scratch.

Setting RandomNAS DARTS DARTS-ES DARTS-ADA

C10

S1 3.17± 0.15 4.66± 0.71 3.05 ± 0.07 3.03 ± 0.08
S2 3.46± 0.15 4.42± 0.40 3.41 ± 0.14 3.59 ± 0.31
S3 2.92 ± 0.04 4.12± 0.85 3.71 ± 1.14 2.99 ± 0.34
S4 89.39± 0.84 6.95± 0.18 4.17 ± 0.21 3.89 ± 0.67

C100

S1 25.81± 0.39 29.93± 0.41 28.90 ± 0.81 24.94 ± 0.81
S2 22.88 ± 0.16 28.75± 0.92 24.68 ± 1.43 26.88 ± 1.11
S3 24.58± 0.61 29.01± 0.24 26.99 ± 1.79 24.55 ± 0.63
S4 30.01± 1.52 24.77 ± 1.51 23.90 ± 2.01 23.66 ± 0.90

SVHN

S1 2.64± 0.09 9.88± 5.50 2.80 ± 0.09 2.59 ± 0.07
S2 2.57 ± 0.04 3.69± 0.12 2.68 ± 0.18 2.79 ± 0.22
S3 2.89± 0.09 4.00± 1.01 2.78 ± 0.29 2.58 ± 0.07
S4 3.42± 0.04 2.90± 0.02 2.55 ± 0.15 2.52 ± 0.06

DARTS with adaptive regulariza-
tion One may think of adapting
the regularization in DARTS based
on the validation loss curvature, in-
stead of tuning that value and keep-
ing it constant during search. The
simplest off-the-shelf procedure to-
wards this would be to increase the
regularization strength whenever the
dominant eigenvalue starts increasing
rapidly. Algorithm 1 (DARTS-ADA,
in the appendix) shows such a pro-
cedure. We use the same criterion
(stop_criter) used for DARTS-
ES. Whenever this criterion is met,
DARTS rolls back to the architectural and search model parameters at stop_epoch, and continues
the search with a larger (by a factor of η) regularization value R (e.g. drop path probability, L2 or
both) for the remaining epochs. This procedure is always repeated if the criterion is met, unless the
regularization value exceeds some maximum predefined value Rmax.

We evaluated DARTS-ADA with R = 3 · 10−4 (DARTS default), Rmax = 3 · 10−2 and η = 10 on
all the search spaces and datasets we use for image classification. Results in Table 1 (DARTS-ADA)
show that the improvements are consistent across all settings compared to the default DARTS and
leads to better performance than RS-ws [Li and Talwalkar, 2019] in most cases.

4 Conclusions

We showed that DARTS often results in degenerate architectures with relatively sharp curvature of
the architecture search objective and poor generalization. Our empirical results show that properly
regularizing the search model improves generalization by redirecting the architectural parameters
to flatter areas of the landscape. We also proposed a simple early stopping criterion and adaptive
regularization for DARTS which substantially improve our understanding of DARTS’ failure modes
and lead to much more robust versions across many settings and tasks.

5

Acknowledgments

The authors acknowledge funding by the Robert Bosch GmbH, support by the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation programme through
grant no. 716721, and by BMBF grant DeToL.

References
Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In International Conference

on Learning Representations, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Aging Evolution for Image Classifier
Architecture Search. In AAAI, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In International
Conference on Learning Representations, 2019.

Liu Chenxi, Chen Liang Chieh, Schroff Florian, Adam Hartwig, Hua Wei, Yuille Alan L., and Fei Fei Li.
Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. In Conference on
Computer Vision and Pattern Recognition, 2019.

Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hutter, and Thomas Brox. Autodispnet: Improving
disparity estimation with automl, 2019.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. CoRR,
abs/1902.07638, 2019.

Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. Evaluating the search
phase of neural architecture search. arXiv preprint, 2019.

H. Liu, K. Simonyan, O. Vinyals, C.Fernando, and K. Kavukcuoglu. Hierarchical representations for efficient
architecture search. In International Conference on Learning Representations (ICLR) 2018 Conference Track,
April .

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):1–42, January 1997. ISSN
0899-7667. doi: 10.1162/neco.1997.9.1.1.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836,
2016.

P. Chaudhari, Anna Choromanska, S. Soatto, Yann LeCun, C. Baldassi, C. Borgs, J. Chayes, Levent Sagun,
and R. Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys. In International Conference on
Learning Representations (ICLR), 2017.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis of large
batch training and robustness to adversaries. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 4949–4959.
Curran Associates, Inc., 2018.

Thanh Dai Nguyen, Sunil Gupta, Santu Rana, and Svetha Venkatesh. Stable bayesian optimization. In-
ternational Journal of Data Science and Analytics, 6(4):327–339, Dec 2018. ISSN 2364-4168. doi:
10.1007/s41060-018-0119-9.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel programming
for hyperparameter optimization and meta-learning. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1568–1577, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal of
Machine Learning Research, 20(55):1–21, 2019a.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architectures using
reinforcement learning. In International Conference on Learning Representations, 2017a.

Zhao Zhong, Jingchen Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural network
architecture generation. 2018.

6

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for scalable
image recognition. In Conference on Computer Vision and Pattern Recognition, 2018.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies. Evolu-
tionary Computation, 10:99–127, 2002.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hierarchical
Representations for Efficient Architecture Search. In International Conference on Learning Representations,
2018.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala Raju,
Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving Deep Neural Networks. In
arXiv:1703.00548, March 2017.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V. Le,
and Alexey Kurakin. Large-scale evolution of image classifiers. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 2902–2911, International Convention Centre, Sydney, Australia, 06–11
Aug 2017. PMLR.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search by network
transformation. In AAAI, 2018a.

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-Level Network Transformation for
Efficient Architecture Search. In International Conference on Machine Learning, June 2018b.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Simple And Efficient Architecture Search for Convolu-
tional Neural Networks. In NIPS Workshop on Meta-Learning, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture search via
lamarckian evolution. In International Conference on Learning Representations, 2019b.

Shreyas Saxena and Jakob Verbeek. Convolutional neural fabrics. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 4053–4061.
Curran Associates, Inc., 2016.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding and
simplifying one-shot architecture search. In International Conference on Machine Learning, 2018.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture search via
parameter sharing. In International Conference on Machine Learning, 2018.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating Neural Architecture Search using
Performance Prediction. In NIPS Workshop on Meta-Learning, 2017b.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter optimization at scale.
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1437–1446, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/falkner18a.
html.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: Bandit-based configuration
evaluation for hyperparameter optimization. In Proceedings of the International Conference on Learning
Representations (ICLR’17), 2017. Published online: iclr.cc.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning: Efficient joint
neural architecture and hyperparameter search. In ICML 2018 Workshop on AutoML (AutoML 2018), 2018.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search. In
International Conference on Learning Representations, 2019.

Francesco Casale, Jonathan Gordon, and Nicolo Fusi. Probabilistic neural architecture search. arXiv preprint,
2019.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. In International Conference on Learning Representations, 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

7

http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
iclr.cc

N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train
convolutional networks for disparity, optical flow, and scene flow estimation. In IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), 2016. arXiv:1512.02134.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation.
In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer Vision (ECCV), Part IV, LNCS 7577,
pages 611–625. Springer-Verlag, October 2012.

A Background and Related Work

A.1 Relation between flat/sharp minima and generalization performance

Already Hochreiter and Schmidhuber [1997] observed that flat minima of the training loss yield better
generalization performance than sharp minima. Recent work [Keskar et al., 2016, Yao et al., 2018]
focuses more on the settings of large/small batch size training, where observations show that small
batch training tends to get attracted to flatter minima and generalizes better. Similarly, Nguyen et al.
[2018] observed that this phenomenon manifests also in the hyperparameter space. They showed that
whenever the hyperparameters overfit the validation data, the minima lie in a sharper region of the
space. This motivated us to conduct a similar analysis in the context of differentiable architecture
search in Section 2.2, where we see the same effect in the space of neural network architectures.

A.2 Neural Architecture Search

Neural Architecture Search (NAS) denotes the process of automatically designing neural network
architectures in order to overcome the cumbersome trial-and-error process when designing archi-
tectures manually. We briefly review NAS here and refer to the recent survey by Elsken et al.
[2019a] for a more thorough overview. Prior work mostly employs either reinforcement learning tech-
niques [Baker et al., 2017a, Zoph and Le, 2017, Zhong et al., 2018, Zoph et al., 2018] or evolutionary
algorithms [Stanley and Miikkulainen, 2002, Liu et al., 2018, Miikkulainen et al., 2017, Real et al.,
2017, 2019] to optimize the discrete architecture space. As these methods are often very expensive,
various work focuses on reducing the search costs by, e.g., employing network morphisms [Cai et al.,
2018a,b, Elsken et al., 2017, 2019b], weight sharing within one-shot models [Saxena and Verbeek,
2016, Bender et al., 2018, Pham et al., 2018] or multi-fidelity optimization [Baker et al., 2017b,
Falkner et al., 2018, Li et al., 2017, Zela et al., 2018], however their applicability still often remains
restricted to rather simple tasks and small datasets. A recent line of work focuses on relaxing the
neural architecture search space by making discrete decisions continuous and thus learnable via
gradient descent [Liu et al., 2019, Xie et al., 2019, Casale et al., 2019, Cai et al., 2019].

A.3 Differentiable Architecture Search (DARTS)

Continuous relaxation of the search space. In agreement with prior work [Zoph et al., 2018, Real
et al., 2019], DARTS optimizes only substructures called cells that are stacked to define the full
network architecture. Each cell contains N nodes organized in a directed acyclic graph. The graph
contains two inputs nodes (given by the outputs of the previous two cells), a set of intermediate nodes,
and one output node (given by concatenating all intermediate nodes). Each intermediate node x(j)
represents a feature map. See Figure 1 for an illustration of such a cell. Instead applying a single
operation to a specific node during architecture search, Liu et al. [2019] relax the decision which
operation to choose by computing the intermediate node as a mixture of candidate operations, applied
to predecessor nodes x(i), i < j,

x(j) =
∑
i<j

∑
o∈O

exp(αi,jo)∑
o′∈O exp(αi,jo′)

o
(
x(i)
)
, (1)

where O denotes the set of all candidate operations (e.g., 3× 3 convolution, skip connection, 3× 3
max pooling, ...) and α = (αi,jo)i,j,o serves as a real valued parametrization of the architecture.

Gradient-based optimization of the search space. DARTS then optimizes both the weights
of the search network (often called one-shot model, since the weights of all individual sub-
graphs/architectures are shared) and architectural parameters by alternating gradient descent. Learning

8

the network weights and the architecture parameters are performed on the training and validation
set, respectively. This can be interpreted as solving the bi-level optimization problem, where the
validation and training loss, Lvalid and Ltrain are the outer and inner problems, respectively, while
the architectural parameters α and network weights w the outer and inner variables, respectively.
Note that DARTS only approximates the inner-level solution by a single gradient step.

At the end of the search phase, a discrete cell is obtained by choosing the k most important incoming
operation for each intermediate node while all others are pruned. Importance is measured by the
operation weighting factor exp(αi,j

o)∑
o′∈O exp(αi,j

o′)
.2

B Details on search spaces in Section 2.1 and final architecture evaluations
for the image classification task

The search space S1-S4 used throughout the paper are defined as follows:

S1: This search space uses a different set of two operators per edge, which we identified using an
offline process that iteratively dropped the operations from the original DARTS search space
with the least importance. This pre-optimized space has the advantage of being quite small
while still including many strong architectures. Refer to Figure 9 for an illustration of this
pre-optimized space.

S2: The set of candidate operations per edge is {3× 3 SepConv, SkipConnect}. We choose these
operations since they are the most frequent in the discovered cells reported by Liu et al. [2019].

S3: The set of candidate operations per edge is {3 × 3 SepConv, SkipConnect, Zero}, where the
Zero operation simply replaces every value in the input feature map by zeros.

S4: The set of candidate operations per edge is {3× 3 SepConv, Noise}, where the Noise operation
simply replaces every value from the input feature map by noise ε ∼ N (0, 1). This is the only
space out of S1-S4 that is not a strict subspace of the original DARTS space; we intentionally
added the Noise operation, which actively harms performance and should therefore not be
selected by DARTS.

S5: Very small search space with known global optimum. Differently from S1-S4 this search
space consists of only one intermediate node for both normal and reduction cells, and 3 operation
choices in each edge, namely 3 × 3 SepConv, SkipConnection, and 3 × 3 MaxPooling. The total
number of possible architectures in this space is 81, all of which we evaluated a-priori.

B.1 Architecture Evaluation

For CIFAR-100 and SVHN we use 16 number of initial filters and 8 cells when training architectures
from scratch for all the experiments we conduct. The rest of the settings is the same as in Liu et al.
[2019].

On CIFAR-10, when scaling the ScheduledDropPath drop probability, we use the same settings for
training from scratch the found architectures as in the original DARTS paper, i.e. 36 initial filters and
20 stacked cells. However, for search space S2 and S4 we reduce the number of initial filters to 16 in
order to avoid memory issues, since the cells found with more regularization usually are composed
only with separable convolutions. When scaling the L2 factor on CIFAR-10 experiments we use 16
initial filters and 8 stacked cells, except the experiments on S1, where the settings are the same as in
Liu et al. [2019], i.e. 36 initial filters and 20 stacked cells.

Note that although altering the regularization factors during DARTS search, when training the final
architectures from scratch we always use the same values for them as in Liu et al. [2019], i.e.
ScheduledDropPath maximum drop probability linearly increases from 0 towards 0.2 throughout
training, Cutout is always enabled with cutout probability 1.0, and the L2 regularization factor is set
to 3 · 10−4.

2One usually searches for two types of cells, a reduction cell (which reduces the spatial dimension), and a
normal cell (which preserves spatial resolution).

9

c_{k-2}

0

skip_connect

dil_conv_3x3

1

skip_connect

dil_conv_5x5

2

max_pool_3x3

skip_connect

3

skip_connect

sep_conv_3x3

c_{k-1}

skip_connect

dil_conv_5x5

skip_connect

sep_conv_3x3

skip_connect

sep_conv_3x3

max_pool_3x3

skip_connect

skip_connect

dil_conv_3x3

skip_connect

sep_conv_3x3

skip_connect

dil_conv_3x3

c_{k}

skip_connect

dil_conv_3x3

dil_conv_3x3

dil_conv_5x5

dil_conv_3x3

dil_conv_5x5

(a) Normal cell space

c_{k-2}

0

max_pool_3x3

avg_pool_3x3

1

max_pool_3x3

avg_pool_3x3

2

max_pool_3x3

avg_pool_3x3

3

max_pool_3x3

avg_pool_3x3

c_{k-1}

max_pool_3x3

dil_conv_3x3

max_pool_3x3

avg_pool_3x3

max_pool_3x3

sep_conv_3x3

max_pool_3x3

avg_pool_3x3

skip_connect

dil_conv_5x5

skip_connect

dil_conv_3x3

skip_connect

dil_conv_5x5

c_{k}

skip_connect

dil_conv_5x5

skip_connect

dil_conv_5x5

skip_connect

dil_conv_5x5

(b) Reduction cell space

Figure 9: Search space S1.

10

C Additional empirical results

Algorithm 1: DARTS_ADA
/* E: epochs to search; R: initial regularization value; Rmax: maximal regularization value; stop_criter: stopping

criterion; η: regularization increase factor */
Input :E, R, Rmax, stop_criter, η

/* start search for E epochs */
for epoch in E do

/* run DARTS for one epoch and return stop=True together with the stop_epoch */
/* and the architecture at stop_epoch if the criterion is met */
stop, stop_epoch, arch ← train_and_eval(stop_criter);
if stop &R ≤ Rmax then

/* start DARTS from stop_epoch with a larger R */
arch ← DARTS_ADA(E - stop_epoch, η · R, Rmax, stop_criter, η);
break

end
end
Output : arch

Table 2: Validation (train) and test accuracy on CIFAR-10 of the one-shot and final evaluation model,
respectively. The values in the last column show the maximum eigenvalue λαmax (computed on a
random sampled mini-batch) of the Hessian, at the end of search for different maximum drop path
probability). The four blocks in the table state results for the search spaces S1-S4, respectively.

Drop Valid acc. Test acc. Params λαmax
Prob. seed 1 seed 2 seed 3 seed 1 seed 2 seed 3 seed 1 seed 2 seed 3 seed 1 seed 2 seed 3

S1

0.0 87.22 87.01 86.98 96.16 94.43 95.43 2.24 1.93 2.03 1.023 0.835 0.698
0.2 84.24 84.32 84.22 96.39 96.66 96.20 2.63 2.84 2.48 0.148 0.264 0.228
0.4 82.28 82.18 82.79 96.44 96.94 96.76 2.63 2.99 3.17 0.192 0.199 0.149
0.6 79.17 79.18 78.84 96.89 96.93 96.96 3.38 3.02 3.17 0.300 0.255 0.256

S2

0.0 88.49 88.40 88.35 95.15 95.48 96.11 0.93 0.86 0.97 0.684 0.409 0.268
0.2 85.29 84.81 85.36 95.15 95.40 96.14 1.28 1.44 1.36 0.270 0.217 0.145
0.4 82.03 82.66 83.20 96.34 96.50 96.44 1.28 1.28 1.36 0.304 0.411 0.282
0.6 79.86 80.19 79.70 96.52 96.35 96.29 1.21 1.28 1.36 0.292 0.295 0.281

S3

0.0 88.78 89.15 88.67 94.70 96.27 96.66 2.21 2.43 2.85 0.496 0.535 0.446
0.2 85.61 85.60 85.50 96.78 96.84 96.74 3.62 4.04 2.99 0.179 0.185 0.202
0.4 83.03 83.24 83.43 97.07 96.85 96.48 4.10 3.74 3.38 0.156 0.370 0.184
0.6 79.86 80.03 79.68 96.91 94.56 96.44 4.46 2.30 2.66 0.239 0.275 0.280

S4

0.0 86.33 86.72 86.46 92.80 93.22 93.14 1.05 1.13 1.05 0.400 0.442 0.314
0.2 81.01 82.43 82.03 95.84 96.08 96.15 1.44 1.44 1.44 0.070 0.054 0.079
0.4 79.49 79.67 78.96 96.11 96.30 96.28 1.44 1.44 1.44 0.064 0.057 0.049
0.6 74.54 74.74 74.37 96.42 96.36 96.64 1.44 1.44 1.44 0.057 0.060 0.066

C.1 Regularization via data augmentation

We investigate the effect of regularizing via data augmentation, namely masking out parts of the input
and intermediate feature maps via Cutout (CO) [DeVries and Taylor, 2017] and ScheduledDropPath
(DP) [Zoph et al., 2018], respectively, during architecture search. We apply DP to randomly zero out
mixed operations starting with a drop probability of 0 and linearly increasing it over the course of
architecture search until it reaches a maximum value. At the same, we randomly zero out patches in
the input images by applying CO; the CO probability also linearly increases.

We ran DARTS plus drop-path (with and without our early stopping criterion, DARTS-ES) with four
values of the maximum drop-path probability (0.0, 0.2, 0.4 and 0.6) on all three image classification
datasets and search spaces S1-S4. Figure 10 summarizes the results: regularization improves the test
performance of DARTS and DARTS-ES in all cases, sometimes very substantially. Table 2 provides
additional details, also showing that the one-shot model accuracy consistently drops by increasing the
drop-path probability, while the test accuracy improves (up to a certain limit). This demonstrates that
overfitting of the architectural parameters is reduced due to an implicit regularization effect.

C.2 A closer look at the dominant eigenvalues

Over the course of all experiments from the previous sections, we tracked the largest eigenvalue
across all configuration and datasets to see how they evolve during the search. Figure 12 and 13

11

0.0 0.2 0.4 0.6
Max. Drop probability

3

4

5

6

7

Te
st

 e
rro

r (
%

)

C10
S1
S2
S3
S4

0.0 0.2 0.4 0.6
Max. Drop probability

22

24

26

28

30

C100

0.0 0.2 0.4 0.6
Max. Drop probability

2

3

4

5

6

7

SVHN

Figure 10: Effect of more regularization via ScheduledDropPath during the DARTS search phase,
on the test performance of the architectures discovered by DARTS and DARTS-ES. The results are
presented for each of the search spaces S1-S4 and for CIFAR-10, CIFAR-100 and SVHN. The solid
lines correspond to DARTS, the dashed lines to DARTS-ES.

show the results across all settings. The markers on each line highlight the epochs where DARTS
early stops based on the procedure described in Section 3. It can be clearly seen that increasing the
inner objective regularization, both in terms of L2 or data augmentation, helps controlling the largest
eigenvalue and keeping it to a small value, which again helps explaining why the architectures found
with stronger regularization generalize better. Figure 4 shows that λαmax (average over search epochs)
indeed correlates with test error (with a Pearson correlation coefficient of 0.867).

The plots in Figure 14 show the full spectrum (sorted based on eigenvalue absolute values) at the
end of search. As one can see, not only the dominant eigenvalue is larger compared to the cases
when the regularization is stronger and the generalization of architectures is better, but also the other
eigenvalues in the spectrum have larger absolute value, indicating a sharper objective landscape
towards many dimensions.

D Disparity Estimation

To study whether our findings generalize beyond image recognition, we also analyzed a search space
for a very different problem: finding encoder-decoder architectures for the dense regression task of
disparity estimation. We base this search space on AutoDispNet-C [Saikia et al., 2019], which used
DARTS for a space containing normal, downsampling and upsampling cells. We again constructed a
reduced space, using the following candidate operations for each edge in each of these cells: {3× 3
SepConv, 3× 3 MaxPool, SkipConnect}. Please refer to Saikia et al. [2019] for more details.

D.1 Datasets

We use the FlyingThings3D dataset [Mayer et al., 2016] for training AutoDispNet. It consists of
rendered stereo image pairs and their ground truth disparity maps. The dataset provides a training
and testing split consisting of 21, 818 and 4248 samples respectively with an image resolution of
960× 540. We use the Sintel dataset (Butler et al. [2012]) for testing our networks. Sintel is another
synthetic dataset from derived from an animated movie which also provides ground truth disparity
maps (1064 samples) with a resolution of 1024× 436.

D.2 Training

For training the search network, images are downsampled by a factor of two and trained for 300k
mini-batch iterations. During search, we use SGD and ADAM to optimize the inner and outer
objectives respectively. Differently from the original AutoDispNet we do not warmstart the search
model weights before starting the architectural parameter updates. The extracted network is also
trained for 300k mini-batch iterations but full resolution images are used. Here, ADAM is used for
optimization and the learning rate is annealed to 0 from 1e− 4, using a cosine decay schedule.

12

D.3 Effect of regularization on the inner objective

To study the effect of regularization on the inner objective for AutoDispNet-C we use experiment
with two types of regularization: data augmentation and of L2 regularization on network weights.
We report the average end point error (EPE), which is the Euclidean distance between the predicted
and ground truth disparity maps.

Table 3: Effect of more augmentation on
the architecture generalization found by Au-
toDispNet. The search was conducted on Fly-
ingThings3D (FT) and the final architecture
was evaluated on both FT and Sintel. Lower
is better.

Aug. One-shot valid FT test Sintel test Params
Scale EPE EPE EPE (M)
0.0 4.49 3.83 5.69 9.65
0.1 3.53 3.75 5.97 9.65
0.5 3.28 3.37 5.22 9.43
1.0 4.61 3.12 5.47 12.46
1.5 5.23 2.60 4.15 12.57
2.0 7.45 2.33 3.76 12.25

Table 4: Effect of more L2 regularization on
the architecture generalization found by Au-
toDispNet. Lower is better.

L2 reg. One-shot valid FT test Sintel test Params
factor EPE EPE EPE (M)
3× 10−4 3.95 3.25 6.13 11.00
9× 10−4 5.97 2.30 4.12 13.92
27× 10−4 4.25 2.72 4.83 10.29
81× 10−4 4.61 2.34 3.85 12.16

Data augmentation. Inspite of fairly large number
of training samples in FlyingThings3D, data augmen-
tation is crucial for good generalization performance.
Disparity estimation networks employ spatial trans-
formations such as translation, cropping, shearing
and scaling. Additionally, appearance transforma-
tions such as additive Gaussian noise, changes in
brightness, contrast, gamma and color are also ap-
plied. Parameters for such transformations are sam-
pled from a uniform or Gaussian distribution (param-
eterized by a mean and variance). In our experiments,
we vary the data augmentation strength by multiply-
ing the variance of these parameter distributions by a
fixed factor, which we dub the augmentation scaling
factor. The extracted networks are evaluated with
the same augmentation parameters. The results of
increasing the augmentation strength of the inner ob-
jective can be seen in Table 3. We observe that as
augmentation strength increases DARTS finds net-
works with more number of parameters and better
test performance. The best test performance is ob-
tained for the network with maximum augmentation for the inner objective. At the same time the
one-shot validation error increases when scaling up the augmentation factor, which again enforces
the argument that the overfitting of architectural parameters is reduced by this implicit regularizer.
L2 regularization. We study the effect of increasing regularization strength on the weights of the
network. The results are shown in Table 4. Also in this case best test performance is obtained with
the maximum regularization strength. At the same time, the one-shot validation error increases when
scaling up the regularization factor, demonstrating again that overfitting of architectural parameters is
reduced due to an implicit regularization effect.

E Results on Penn Treebank

5e-07 1.5e-06 4.5e-06 1.35e-05
L2 factor

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Te
st

 p
er

pl
ex

ity

734

736

738

740

742

On
e-

sh
ot

 v
al

id
at

io
n

pe
rp

le
xi

ty
Effect of more L2 regularization on generalization

Valid ppt

Figure 11: Performance of recurrent cells
found with different L2 regularization fac-
tors on the inner objective on PTB. The blue
dashed line denotes the validation perplexity
of the search model.

Here we investigate the effect of more L2 regular-
ization on the inner objective for searching recurrent
cells on Penn Treebank (PTB). We again used a re-
duced search space with only ReLU and identity map-
ping as possible operations. The rest of the settings
is the same as in [Liu et al., 2019].

We run DARTS search four independent times with
different random seeds, each with four L2 regular-
ization factors, namely 5 × 10−7 (DARTS default),
15 × 10−7, 45 × 10−7 and 135 × 10−7. Figure 11
shows the median test perplexity after 1600 training
epochs of the architectures found by DARTS with
the aforementioned L2 regularization values. As we
can see, a stronger regularization factor on the inner
objective makes the search procedure more robust.
The median perplexity of the discovered architectures
gets better as we increase the L2 factor from 5×10−7
to 45×10−7, while the one-shot validation mean per-
plexity increases. This observation is similar to the ones on image classification, showing again that
properly regularizing the inner objective helps reduce overfitting the architectural parameters.

13

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar10
dp=0.0000
dp=0.2000
dp=0.4000
dp=0.6000

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar10

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar10

0 10 20 30 40 50
Epoch

0.05

0.10

0.15

0.20

0.25

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar10

0 10 20 30 40 50
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar100

0 10 20 30 40 50
Epoch

0.4

0.6

0.8

1.0

1.2

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar100

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar100

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

0.30

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar100

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

M
ax

. E
ig

en
va

lu
e

M
A

S1 svhn

0 10 20 30 40 50
Epoch

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

M
ax

. E
ig

en
va

lu
e

M
A

S2 svhn

0 10 20 30 40 50
Epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

M
ax

. E
ig

en
va

lu
e

M
A

S3 svhn

0 10 20 30 40 50
Epoch

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

M
ax

. E
ig

en
va

lu
e

M
A

S4 svhn

Figure 12: Local average of the dominant EV λαmax throughout DARTS search (for different drop
path prob. values). Markers denote the early stopping point based on the criterion in Section ??.

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar10
L2=0.0003
L2=0.0009
L2=0.0027
L2=0.0081
L2=0.0243

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar10

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar10

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar10

0 10 20 30 40 50
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ax

. E
ig

en
va

lu
e

M
A

S1 cifar100

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

M
ax

. E
ig

en
va

lu
e

M
A

S2 cifar100

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

M
ax

. E
ig

en
va

lu
e

M
A

S3 cifar100

0 10 20 30 40 50
Epoch

0.05

0.10

0.15

0.20

0.25

0.30

M
ax

. E
ig

en
va

lu
e

M
A

S4 cifar100

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

M
ax

. E
ig

en
va

lu
e

M
A

S1 svhn

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

M
ax

. E
ig

en
va

lu
e

M
A

S2 svhn

0 10 20 30 40 50
Epoch

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

M
ax

. E
ig

en
va

lu
e

M
A

S3 svhn

0 10 20 30 40 50
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ax

. E
ig

en
va

lu
e

M
A

S4 svhn

Figure 13: Effect of L2 regularization no the EV trajectory. The figure is analogous to Figure 12.

14

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

Eigenspectrum: S1 cifar10
dp=0.0000
dp=0.2000
dp=0.4000
dp=0.6000

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

Eigenspectrum: S2 cifar10

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Eigenspectrum: S3 cifar10

0 10 20 30
i-th eigenvalue

0.00

0.05

0.10

0.15

Eigenspectrum: S4 cifar10

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S1 cifar100

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S2 cifar100

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

Eigenspectrum: S3 cifar100

0 10 20 30
i-th eigenvalue

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Eigenspectrum: S4 cifar100

0 10 20 30
i-th eigenvalue

0.2

0.1

0.0

0.1

0.2

Eigenspectrum: S1 svhn

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Eigenspectrum: S2 svhn

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

Eigenspectrum: S3 svhn

0 10 20 30
i-th eigenvalue

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Eigenspectrum: S4 svhn

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

Eigenspectrum: S1 cifar10
L2=0.0003
L2=0.0009
L2=0.0027
L2=0.0081
L2=0.0243

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

Eigenspectrum: S2 cifar10

0 10 20 30
i-th eigenvalue

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Eigenspectrum: S3 cifar10

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

Eigenspectrum: S4 cifar10

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S1 cifar100

0 10 20 30
i-th eigenvalue

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Eigenspectrum: S2 cifar100

0 10 20 30
i-th eigenvalue

0.0

0.2

0.4

0.6

0.8

1.0
Eigenspectrum: S3 cifar100

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Eigenspectrum: S4 cifar100

0 10 20 30
i-th eigenvalue

0.2

0.1

0.0

0.1

0.2

0.3
Eigenspectrum: S1 svhn

0 10 20 30
i-th eigenvalue

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Eigenspectrum: S2 svhn

0 10 20 30
i-th eigenvalue

0.00

0.05

0.10

0.15

0.20
Eigenspectrum: S3 svhn

0 10 20 30
i-th eigenvalue

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0.125
Eigenspectrum: S4 svhn

Figure 14: Effect of L2 regularization (top 3 rows) and augmentation (bottom 3 rows) on the
eigenspectrum.

15

F Discovered cells on search spaces S1-S4 from Section 2.1 on other datasets

c_{k-2}

0

max_pool_3x3

1

max_pool_3x3

3

max_pool_3x3

c_{k-1}

max_pool_3x3

max_pool_3x3

2sep_conv_3x3

dil_conv_3x3

c_{k}

skip_connect

(a) S1

c_{k-2}

0

sep_conv_3x3
2sep_conv_3x3

c_{k-1} sep_conv_3x3

1
sep_conv_3x3

3
skip_connect

sep_conv_3x3

skip_connect c_{k}

skip_connect

(b) S2

c_{k-2}

0

skip_connect

1
sep_conv_3x3

2

skip_connect 3

sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3
c_{k}

(c) S3

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(d) S4

Figure 15: Reduction cells found by DARTS when ran on CIFAR-10 with its default hyperparameters
on spaces S1-S4. These cells correspond with the normal ones in Figure 1.

c_{k-2}

0

skip_connect
1

skip_connect

2

skip_connect

c_{k-1} skip_connect

skip_connect

skip_connect

3
skip_connect

skip_connect

c_{k}

(a) S1 (C100)

c_{k-2}
0

skip_connect

c_{k-1}

skip_connect

1skip_connect

2
skip_connect

3
skip_connect

skip_connect

c_{k}sep_conv_3x3

sep_conv_3x3

(b) S2 (C100)

c_{k-2}

0

skip_connect

1
sep_conv_3x3

2

skip_connect 3

sep_conv_3x3

c_{k-1}

skip_connect

skip_connect

skip_connect

sep_conv_3x3
c_{k}

(c) S3 (C100)

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

c_{k-1} sep_conv_3x3
2

noise

noise c_{k}

noise

3noise

noise

(d) S4 (C100)

c_{k-2}

0

skip_connect

c_{k-1} skip_connect
1

skip_connect

2

skip_connect

3
skip_connect

skip_connect

skip_connect

skip_connect

c_{k}

(e) S1 (SVHN)

c_{k-2} 0skip_connect

c_{k-1}

skip_connect
1

skip_connect

skip_connect 2

skip_connect

3skip_connect
c_{k}

skip_connect

skip_connect

(f) S2 (SVHN)

c_{k-2}

0

skip_connect

1
skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect
c_{k}

(g) S3 (SVHN)

c_{k-2}

0

sep_conv_3x3
1sep_conv_3x3

c_{k-1}
sep_conv_3x3

noise

2noise c_{k}
noise 3

noise

noise

(h) S4 (SVHN)

Figure 16: Normal cells found by DARTS on CIFAR-100 and SVHN when ran with its default
hyperparameters on spaces S1-S4. Notice the dominance of parameter-less operations such as skip
connection and pooling ops.

c_{k-2}

0

max_pool_3x3
1

avg_pool_3x3

c_{k-1}
max_pool_3x3

2
sep_conv_3x3

dil_conv_5x5

dil_conv_3x3

c_{k}
3

dil_conv_5x5

dil_conv_5x5

(a) S1 (C100)

c_{k-2}

0

sep_conv_3x3

1

sep_conv_3x3

c_{k-1} sep_conv_3x3 skip_connect

2
skip_connect

3
skip_connect

c_{k}

sep_conv_3x3

skip_connect

(b) S2 (C100)

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

skip_connect
c_{k}

(c) S3 (C100)

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

c_{k}

(d) S4 (C100)

c_{k-2}

0

avg_pool_3x3

2
max_pool_3x3

3max_pool_3x3

c_{k-1} max_pool_3x3
1

avg_pool_3x3

max_pool_3x3

skip_connect

c_{k}

skip_connect

(e) S1 (SVHN)

c_{k-2}

0
skip_connect

1
skip_connect

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}
skip_connect

sep_conv_3x3

skip_connect

c_{k}

sep_conv_3x3

(f) S2 (SVHN)

c_{k-2}

0

skip_connect

1

skip_connect
3

skip_connect

c_{k-1}

skip_connect

sep_conv_3x3

2skip_connect
skip_connect

skip_connect

c_{k}

(g) S3 (SVHN)

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

(h) S4 (SVHN)

Figure 17: Reduction cells found by DARTS on CIFAR-100 and SVHN when ran with its default
hyperparameters on spaces S1-S4.

16

	Introduction
	Failure modes and overcoming them by regularization
	When DARTS fails
	Large curvature and generalization performance
	Regularization improves generalization
	Further analysis

	Architecture search early stopping and adaptive regularization
	Conclusions
	Background and Related Work
	Relation between flat/sharp minima and generalization performance
	Neural Architecture Search
	Differentiable Architecture Search (DARTS)

	Details on search spaces in Section 2.1 and final architecture evaluations for the image classification task
	Architecture Evaluation

	Additional empirical results
	Regularization via data augmentation
	A closer look at the dominant eigenvalues

	Disparity Estimation
	Datasets
	Training
	Effect of regularization on the inner objective

	Results on Penn Treebank
	Discovered cells on search spaces S1-S4 from Section 2.1 on other datasets

