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Few-Shot	Learning
The	model	is	trained	on	a	set	of	classes	(base	classes)	with	abundant	examples	
in	a	fashion	that	promotes	the	model	to	classify	unseen	classes	(novel	classes)	
using	few	labeled	instances
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Existing	Approaches
• Meta-learning	based	methods:

aim	to	learn	an	optimizer	or	a	good	model	initialization	that	can	adapt	for	novel	classes	in	few	gradient	
steps	and	limited	labelled	examples.	E.g. Ravi	&	Larochelle,	2017;	Andrychowicz,	Marcin,	et	al.	2016;	Finn	et	
al.	2017	

• Distance	metric	based	methods:	
leverage	the	information	about	similarity	between	images.	E.g. Vinyals,	Oriol,	et	al.	2016;	Snell,	J.	et	al.	
2017

• Hallucination	based	methods:	
augment	the	limited	training	data	for	the	new	task	by	generating	or	hallucinating	new	data	points.	E.g.	
Hariharan,	B.,	&	Girshick,	R.	2017;	Wang,	Yu-Xiong,	et	al.	2018
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Key	Contributions
• We	observe	that	applying	Manifold	Mixup (Verma,	V,	et	al.	2018)	regularization	

over	the	feature	manifold	enriched	via	rotation	self-supervision	task	of	(Gidaris,	S.	
et	al.	2018)	significantly	improves	the	performance	in	few-shot	tasks	in	
comparison	with	Baseline++	(Wei-Yu	Chen	et	al.	2019).	

• The	proposed	methodology	outperforms	state-of-the-art	methods	by	3-8%	over	
CIFAR-FS,	CUB	and	mini-ImageNet	datasets.

• We	show	that	the	improvements	made	by	our	methodology	become	more	
pronounced	in	the	cross-domain	few-shot	task	evaluation	and	on	increasing	N	
from	standard	value	of	5	in	the	N-way	K-shot	evaluation.	
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Manifold	Mixup (Verma,	V,	et	al.	2018)

leverages	linear	interpolations	in	hidden	layers	of	neural	network	to	help	the	
trained	model	generalize	better.
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Db	is	the	training	data	and	λ is	sampled	from	a	𝛽(α,α)	distribution	and	𝐿is	
standard	cross	entropy	loss	
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Rotation	Self-Supervision	(Gidaris,	S.	et	al.	2018)	
The	input	image	is	rotated,	and	the	auxiliary	task	of	the	model	is	to	predict	
the	rotation.	Training	loss	is	𝐿#$% +	𝐿()*++
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Db	is	the	training	data;	|CR|	is	the	number	of	rotated	images;										is	a	4-way	
linear	classifier	
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Proposed	Method:	S2M2R

1. Self-supervised	training:	train	with	rotation	self-supervision	as	an	auxiliary	task

2. Fine-tuning	with	Manifold	Mixup:	fine-tune	the	above	model	with	Manifold-Mixup for	
a	few	more	epochs	i.e.	𝐿 = 𝐿-- + 0.5(𝐿#$% + 𝐿()*++	)

After	obtaining	the	backbone,	a	cosine	classifier	is	learned	over	the	feature	representation	
of	novel	classes	for	each	few-shot	task.
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Comparison	with	prior	state-of-the-art	methods
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*denotes	our	implementation
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Effect	of	Varying	N	in	N-way	K-shot	Evaluation

*denotes	our	implementation
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Cross	Domain	Few-Shot	Learning
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Visualization	of	Feature	Representations

UMAP	(McInnes,	L.	et	al.	2018)	2-dim	plot	of	feature	vectors	of	novel	classes	in	mini-Imagenet dataset	using	Baseline++,	
Rotation,	S2M2R (left	to	right)
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Summary

• learning	feature	representation	with	relevant	regularization	and	self-
supervision	techniques	lead	to	consistent	improvement	in	few-shot	learning	
tasks	on	a	diverse	set	of	image	classification	datasets.	

• feature	representation	learning	using	both	self-supervision	and	classification	
loss	and	then	applying	Manifold-mixup over	it,	outperforms	prior	state-of-
the-art	approaches	in	few-shot	learning.
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Thank	You!
Questions?
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kbalaji@adobe.com;	vineethnb@iith.ac.in

Code:	https://github.com/nupurkmr9/S2M2_fewshot
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