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Can we learn to explore
In contextual bandits?
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Training Mélée by Imitation
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Generalization: Meta-Features

- No direct dependency on the contexts x.
- Features include:
- Calibrated predicted probability p(a: | fi, x:);
- Entropy of the predicted probability distribution:;
- A one-hot encoding for the predicted action ft(x:);
- Current time step t;

- Average observed rewards for each action.

8



.o o -
N o v ©o

Progressive Reward
O
@)

O
Ul

0 100 200
Time

e MELEE, u: 0.0 == = gc-decreasing, &p: 0.1 - EG e-greedy
== g-greedy, €: 0.0 e | iINUCB === T-first, €: 0.02 Cover, Bag Size: 16, y: 0.1

A representative learning curve
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Win statistics: each (row, column) entry shows the number of times
the row algorithm won against the column, minus the number of losses.
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Win / Loss Statistics

Win statistics: each (row, column) entry shows the number of times
the row algorithm won against the column, minus the number of losses.
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Theoretical Guarantees

- The no-regret property of Aggrevate can be leveraged in our
meta-learning setting.

- We relate the regret of the learner to the overall regret of T.

- This shows that, if the underlying classifier improves
sufficiently quickly, Mélée will achieve sublinear regret.
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Conclusion

Q: Can we learn to explore in contextual bandits?

A: Yes, by imitating an expert exploration policy:;
Generalize across bandit problems using meta-features;
Outperform alternative strategies in most settings;

We provide theoretical guarantees.
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