Deep Subspace Networks for Few-Shot Learning

Christian Simon^{†§} Richard Nock^{+‡§}

Piotr Koniusz^{†§}

Mehrtash Harandi^{#§}

Problem Definition

- Given: A Support Set $S = \{(x_{1,1}, c_{1,1}), (x_{1,2}, c_{1,2}), \cdots, (x_{N,K}, c_{N,K})\}; x \in \mathbb{R}^D$ A query $q \in \mathbb{R}^D$
- A Support set contains *N*-way (classes) and *K*-shot (samples).
- The classes are unseen, can we classify them?.

Motivation

- An approach for classification is to use a fully connected layer as a classifier following with a softmax function.
- Let a function $f_{\Theta} : \mathbb{R}^{D} \to \mathbb{R}^{n}$, extracting a feature from an input.
- Then, we can formulate the classifier and the softmax function as:

$$p(c|\boldsymbol{q}) = \frac{\exp(\boldsymbol{w}_c^\top f_{\Theta}(\boldsymbol{q}))}{\sum_{c'} \exp(\boldsymbol{w}_{c'}^\top f_{\Theta}(\boldsymbol{q}))} = \frac{\exp(s_c(\boldsymbol{q}))}{\sum_{c'} \exp(s_{c'}(\boldsymbol{q}))}$$

• The classifier needs to be updated (e.g. iterative gradient descents) using new samples if there are samples from unseen classes.

Motivation

- Some prior approaches use pair-wise [1], prototype [2,4], and binary classifiers [3].
- We define a function S_c for these classifiers.
- For example:

Vinyals et al., "Matching networks for one-shot learning," NIPS, 2016.
Snell et al., "Prototypical networks for few-shot learning," NIPS, 2017.

[3] Sung et al., "Learning to compare: relation network for few-shot learning," CVPR, 2018[4] Gidaris and Komodakis,"Learning without forgetting," CVPR, 2018.

Proposed Method

- Using subspace methods as classifiers.
- Projecting each datapoint within the same class to a subspace.

Where:

 W_c is an orthogonal basis for linear subspace spanning $\mathbb{X}_c = \{f_{\Theta}(\boldsymbol{x}_i); y_i = c\}$ $\boldsymbol{b}_c = \mathbb{E}_{\boldsymbol{x} \sim p_c} (f_{\Theta}(\boldsymbol{x}))$

Proposed Method

Subspace Method

Algorithm 1 Train Deep Subspace NetworksInput: $S = \{(x_{1,1}, c_{1,1}), \cdots, (x_{N,K}, c_{N,K})\}$ and q1: $\Theta_0 \leftarrow$ random initialization2: for t in $\{\mathcal{T}_1, ..., \mathcal{T}_{N_T}\}$ do3: for c in $\{1, ..., N\}$ do4: Get \tilde{X} examples in the support set for class c5: $[\mathcal{U}, \Sigma, \mathcal{V}^T] \leftarrow \text{SVD}(\tilde{X}_c)$ 6: $W_c \leftarrow \mathcal{U}_{1,...,n}$

- 7: Project q using W_c
- 8: Calculate log probability
- 9: end for
- 10: Update Θ from loss

11: **end for**

VS

Prototype Method

Algorithm 2 Train Prototypical Networks				
Input: $S = \{(x_{1,1}, c_{1,1}), \cdots, (x_{N,K}, c_{N,K})\}$ and q				
1:	$\Theta_0 \leftarrow$ random initialization			
2:	for t in $\{\mathcal{T}_1,, \mathcal{T}_{N_T}\}$ do			
3:	for c in $\{1,, N\}$ do			
4:	Get $ ilde{X}$ examples in the support set for class c			
5:	$oldsymbol{\mu}_{c} \leftarrow rac{1}{K} \sum_{x \in oldsymbol{X}} f_{\Theta}(oldsymbol{x})$			
6:	Calculate the similarity between q and μ_c			
7:	Calculate log probability			
8:	end for			
9:	Update Θ from loss			
10:	end for			

Experiments

- Few-Shot Classification
 - Deep Subspace Network (DSN) compares to the state-of-the-arts

Model	Backbone	1-shot	5-shot
Matching Networks [1]	ResNet-18	52.91 ± 0.88	68.88 ± 0.69
Prototypical Networks [2]	ResNet-18	54.16 ± 0.82	73.68 ± 0.65
Relation Networks [3]	ResNet-18	52.48 ± 0.86	69.83 ± 0.68
CTM [4] (fine-tune)	ResNet-18	62.05 ± 0.55	78.63 ± 0.06
DSN	ResNet-18	56.32 ± 0.79	$\textbf{75.49} \pm \textbf{0.62}$
DSN (fine-tune)	ResNet-18	62.58 ± 0.80	$\textbf{79.62} \pm \textbf{0.71}$

Accuracy 5-way 1-shot and 5-way 5-shot with 95% confidence intervals on the *mini*-ImageNet

Experiments

• Robustness

- There are two types of evaluation:
 - Samples come from other classes in the support set
 - Noise is appended to the input image

Accuracy on the *mini*-ImageNet

Conclusion

- Subspace method is more expressive as a classifier to capture the information from a few samples compared to prior works e.g. averaging the features.
- Subspace is also more robust compared to the prototype solution because of the denoising capability of subspaces.

