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- Limited to game settings and lack of realistic use 
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Meta Reinforcement Learning

- Task distributions are very narrow
- Adaptation to new variations of the same task
- Better characterized as “multi-goal” benchmarks

Promise: efficiently acquire new tasks by leveraging experiences 
from past tasks

Current Meta-RL benchmarks
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Large, diverse task set Generalization to new tasks 
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Evaluation Results
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Methods: Meta-RL Methods:
• Multi-Task PPO
• Multi-Task TRPO
• Multi-Task SAC
• Task Embeddings
• Multi-Task Multi-Headed 

SAC

• MAML
• RL2

• PEARL

For full evaluation results of all 
methods, please come to our poster 

session!
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Please come to our 
poster for a demo!


