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Abstract

After developer adjustments to a machine learning (ML) system, how can the
results of an old hyperparameter optimization automatically be used to speedup a
new hyperparameter optimization? This question poses a challenging problem, as
developer adjustments can change which hyperparameter settings perform well, or
even the hyperparameter space itself. While many approaches exist that leverage
knowledge obtained on previous tasks, so far, knowledge from previous develop-
ment steps remains entirely untapped. In this work, we remedy this situation and
propose a new research framework: hyperparameter transfer across adjustments
(HT-AA). To lay a solid foundation for this research framework, we provide four
HT-AA baseline algorithms and eight benchmarks. A combination of the best
two baselines, on average and depending on the budgets involved, reaches a given
performance 1.2–2.9x faster than a prominent HPO algorithm without transfer.
As hyperparameter optimization is a crucial step in ML development but requires
extensive computational resources, this speedup would lead to faster development
cycles, lower costs, and reduced environmental impacts. To make these bene-
fits available to ML developers off-the-shelf, we provide a Python package that
implements the proposed transfer algorithms.

Figure 1: Hyperparameter Optimization (HPO) across adjustments to the algorithm or hyperparameter
search space. Common practice is to perform HPO from scratch after each adjustment, or to somehow
manually transfer knowledge. In contrast, we propose a new research framework about automatic
hyperparameter knowledge transfers across adjustments.
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1 Introduction: A New Hyperparameter Transfer Framework

The machine learning (ML) community arrived at the current generation of ML algorithms by
performing many iterative adjustments. Likely, the way to artificial general intelligence requires
many more adjustments. Each adjustment could change which hyperparameter settings perform
well, or even the hyperparameter space itself (Chen et al., 2018; Li et al., 2020). For example, when
deep learning developers change the optimizer, the learning rate’s optimal value likely changes, and
the new optimizer may also introduce new hyperparameters. Since machine learning systems are
known to be very sensitive to their hyperparameters (Chen et al., 2018; Feurer and Hutter, 2019),
developers are faced with the question of how to adjust their hyperparameters after changing their
code. Assuming that the developers have results of one or several hyperparameter optimizations
(HPOs) that were performed before the adjustments, they have two options:

1. Somehow manually transfer knowledge from old HPOs.

This is the option chosen by many researchers and developers, explicitly disclosed, e.g., in the seminal
work on AlphaGo (Chen et al., 2018). However, this is not a satisfying option since manual decision
making is time-consuming, often individually designed, and has already lead to reproducibility
problems (Musgrave et al., 2020).

2. Start the new HPO from scratch.

Leaving previous knowledge unutilized can lead to higher computational demands and worse perfor-
mance (Section 5). This is especially bad as the energy consumption of machine learning systems is
already recognized as an environmental problem. Deep learning pipelines, for example, can have
CO2 emissions in the order of magnitude of multiple car lifetime’s worth of emissions (Strubell
et al., 2019) and their energy demands are growing furiously: Schwartz et al. (2019) cite a “300,000x
increase from 2012 to 2018”. Therefore, reducing the number of evaluated hyperparameter settings
should be a general goal of the community.

The main contribution of this work is the introduction of a new research framework: Hyperparame-
ter transfer across adjustments (HT-AA), which empowers developers with a third option:

3. Automatically transfer knowledge from previous HPOs.

This option leads to advantages in two aspects: the automation of decision making and the utilization
of previous knowledge. On the one hand, the automation allows to benchmark strategies, replaces
expensive manual decision making, and enables reproducible and comparable experiments; on the
other hand, the utilization of previous knowledge leads to faster development cycles, lower costs, and
reduced environmental impacts.

To lay a solid foundation for the new transfer framework, our individual contributions are as follows:
-I- A detailed introduction of the hyperparameter transfer across adjustments framework (Section 2).
-II- A placement of our framework in existing research efforts and a discussion of the research
opportunities that our framework opens up. -III- We provide four simple baseline algorithms for
this problem (Section 4), and perform an empirical study across eight benchmarks (Section 5). -IV-
Further, we provide open source code for our experiments1, benchmarks2, and HT-AA baseline
algorithms3.

2 Hyperparameter Transfer Across Adjustments Framework

After having provided a broad introduction to the topic, we now provide a detailed description of
hyperparameter transfer across developer adjustments (HT-AA). We first introduce hyperparameter
optimization, then discuss the types of developer adjustments, and finally describe the transfer across
these adjustments.

Hyperparameter optimization In this work, we focus on a basic version of hyperparameter opti-
mization (HPO) and refer to Section 3 for a discussion on potential extensions of our framework

1Source code experiments: github.com/hp-transfer/htaa_experiments/tree/v0.1.0
2Python package benchmarks: github.com/hp-transfer/ht_benchmarks/tree/v0.1.0
3Python package optimizers: github.com/hp-transfer/ht_optimizers/tree/v0.1.0
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Figure 2: Developer adjustments from the perspective of hyperparameter optimization.

to more advanced HPO scenarios. Specifically, the HPO formulation we utilize in this work is the
following problem:

minimize
x∈X

fS(x) with b trials , (1)

where S is a machine learning system, fS is the objective function, b is the number of available
evaluations, and X is the hyperparameter space. We refer to a specific HPO problem with the three
tuple (X , fS , b).

Developer adjustments We now put developer adjustments on concrete terms. From the perspec-
tive of HPO, we consider two different categories of adjustments: ones that do not change the
hyperparameter space X (homogeneous adjustments), and ones that do (heterogenous adjustments).
For heterogeneous adjustments, we further differentiate between adjustments that add or remove
a hyperparameter (hyperparameter adjustments), and adjustments that change the search space for
a specific hyperparameter (range adjustments). Regarding homogeneous adjustments, these could
either change the algorithm implementation or the hardware that the algorithm is run on. Figure 2
shows an illustration of the adjustment types.

Knowledge transfer across adjustments In general, a continuous stream of developer adjustments
could be accompanied by many HPOs. However, in this work, we only consider the transfer between
two HPO problems and refer to a discussion about a potential extension in Section 3. The two
HPO problems arise from adjustments Ψ to a machine learning system Sold and its hyperparameter
space Xold, which lead to Snew,Xnew := Ψ(Sold, Xold). Specifically, the hyperparameter transfer
across adjustments problem is to solve the HPO problem (Xnew, fSnew , bnew), given the results for
(Xold, fSold , bold). Compared to current HPO practices, developers can choose a lower budget bnew,
given evidence for a transfer algorithm achieving the same performance faster.

3 Related Work and Research Opportunities

In this section, we discuss work related to hyperparameter transfer across adjustments (HT-AA) and
present several research opportunities in combining existing ideas with HT-AA.

Transfer learning Transfer learning studies how to use observations from one or multiple source
tasks to improve learning on one or multiple target tasks (Zhuang et al., 2019). If we view the
HPO problems before and after specific developer adjustments as tasks, we can consider HT-AA
as a specific transfer learning problem. As developer adjustments may change the hyperparameter
space, HT-AA would then be categorized as a heterogeneous transfer learning problem (Day and
Khoshgoftaar, 2017).

Transfer learning across adjustments Recently, Berner et al. (2019) transferred knowledge between
deep reinforcement learning agents across developer adjustments. For each type of adjustment they
encountered, they crafted techniques to preserve, or approximately preserve, the neural network
policy. Their transfer strategies are inspired by Net2Net knowledge transfer (Chen et al., 2015), and
they use the term surgery to refer to this practice. This work indicates that transfer learning across
adjustments is not limited to knowledge about hyperparameters, but extends to a more general setting,
leaving room for many research opportunities.

Continuous Knowledge Transfer In this paper, we focus on transferring knowledge from the last
hyperparameter optimization (HPO) performed, but future work could investigate a continuous
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transfer of knowledge across many cycles of adjustments and HPOs. Transferring knowledge from
HPO runs on multiple previous versions could lead to further performance gains, as information from
each version could be useful for the current HPO. Such continuous HT-AA would then be related to
the field of continual learning. (Thrun and Mitchell, 1995; Lange et al., 2020).

Hyperparameter transfer across tasks (HT-AT) There exists an extensive research field that studies
the transfer across tasks for HPOs (Vanschoren, 2018). The main difference to hyperparameter transfer
across adjustments is that the former assumes an unchanging hyperparameter space, where as dealing
with such changes is one of the main challenges in the later. In HT-AT, the hyperparameter space
and the machine learning system remain unchanged, but the task that the system is applied to
changes. Hyperparameter transfer across adjustments (HT-AA) problems, where all adjustments are
homogeneous (do not change the hyperparameter space), are syntactically equivalent to an HT-AT
problem. In such cases, approaches for HT-AT could be applied without modification, provided they
work with one task. Further, adaptations of across task strategies to the across adjustments setting
could lead to more powerful HT-AA approaches in the future, and the combination of across task and
across adjustments hyperparameter transfer is an exciting research opportunity that could provide
even larger speedups.

Advanced hyperparameter optimization HT-AA can be applied to one of the many extensions
to the basic hyperparameter optimization (HPO) formulation. One such extension is multi-fidelity
HPO, which allows the use of cheap-to-evaluate approximations to the actual objective (Li et al.,
2017; Falkner et al., 2018). Similarly, cost-aware HPO adds a cost to each hyperparameter setting,
so a cost model can prioritize the evaluation of cheap hyperparameter settings over expensive ones
(Snoek et al., 2012). Yet another extension is to take different kinds of evaluation noise into account
(Kersting et al., 2007) or to consider not one, but multiple objectives to optimize for (Khan et al.,
2002). All these HPO formulations can be studied in conjunction with HT-AA, to either provide
further speedups, or to deal with more general optimization problems.

4 Baseline Algorithms for HT-AA

In this section, we present several baselines for the specific instantiation of the hyperparameter
transfer across adjustments (HT-AA) framework which considers basic hyperparameter optimization
(HPO), a one-step transfer, and no user annotations or code analysis. We resist the temptation to
introduce complex approaches alongside a new research framework and instead focus on a solid
foundation. Specifically, we focus on approaches that do not consider any knowledge from the new
HPO run for the transfer. As some of these strategies already lead to strong performance (Section 5),
the design of more complex approaches is an exciting future direction. We first introduce the basic
HPO algorithm that the transfer approaches build upon, and then the four approaches themselves.

Background For basic hyperparameter optimization and parts of the transfer algorithm, we employ
the Tree-Structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011), which is the default
algorithm in the popular HyperOpt package (Bergstra et al., 2013). TPE uses kernel density estimators
to model the densities l(x) and g(x), for the probability of a given hyperparameter configuration
x being worse (l), or better (g), than the best already evaluated configuration x∗. To decide which
configuration to evaluate, TPE then solves x∗ ∈ arg maxx∈X g(x)/b(x) approximately. In our
experiments, we use the TPE implementation and hyperparameter settings from Falkner et al. (2018).

Only Optimize New Hyperparameters A natural strategy for HT-AA is to set already optimized
hyperparameters to their previous best setting and only tune new hyperparameters (Agostinelli et al.,
2014; Huang et al., 2017; Wu and He, 2018). If the previous best setting is not a valid configuration
anymore due to range adjustments, this strategy uses the best setting that still is a valid configuration.
In the following, we refer to this strategy as only-optimize-new.

Drop Unimportant Hyperparameters Another strategy inspired by manual HT-AA efforts is to
only optimize important hyperparameters. The utilization of importance measurements was, for
example, explicitly disclosed in the seminal work on AlphaGo (Chen et al., 2018). Here, we determine
the importance of each individual hyperparameter with functional analysis of variance (fANOVA)
(Hutter et al., 2014) and do not tune hyperparameters with below mean importance. Therefore, this
strategy only optimizes new hyperparameters and hyperparameters with above mean importance. In
the following, we refer to this strategy as drop-unimportant.
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First Evaluate Best The best-first strategy uses only-optimize-new for the first evaluation, and for
the remaining evaluations uses standard TPE. This strategy has a large potential speedup and low risk
as it falls back to standard TPE.

Transfer TPE (T2PE) We introduce T2PE in two parts: first, the strategy to deal with homogeneous
adjustments or hyperparameter adjustments, and second, the strategy to deal with range adjustments.
Please find the pseudocode for T2PE in Appendix B and an illustration in Appendix A.

For homogeneous adjustments and hyperparameter adjustments, the new hyperparameter space Xnew
and the old hyperparameter space Xold only differ in hyperparameters, not in hyperparameter ranges,
so we can decompose them as Xnew = Xonly-new × Xboth and Xold = Xboth × Xonly-old, where Xboth
is the part of the hyperparameter space that remains unchanged across adjustments (see figure in
Appendix B for reference). The core idea of our algorithm is to project the hyperparameter settings
that were evaluated in the old HPO from Xold to Xboth. We sample over Xboth from a TPE model on
the projected results of the previous HPO, and for Xonly-new we use a random sample (Appendix B).
Once there are enough evaluations to fit a TPE model for the new HPO, we fit and use this new TPE
model.

A range adjustment can remove values from the hyperparameter range, or add values. For an adjust-
ment of hyperparameter rangeXHi

old toXHi
new this can be expressed asXHi

new = XHi

both∪X
Hi

both,range-only-new

with XHi

both = XHi

old \ X
Hi

both,range-only-old. We handle range removals (XHi

both,range-only-old 6= ∅) separately
from range addition (XHi

both,range-only-new 6= ∅). To handle range removals, T2PE ignores hyperparameter
settings from the previous HPO that have hyperparameter values in Xboth,range-only-old when forming
the model Mboth. The main idea in how we handle additions to ranges, is to guarantee that each added
range XHi

both,range-only-new is sampled with probability proportional to its size with respect to |XHi
new|, i.e.,

with probability pi =
|XHi

both,range-only-new|

|XHi
new |

. To guarantee this property, T2PE first samples xboth from Xboth

according to Mboth, then mutates xi
both with probability pi to a random sample from XHi

both,range-only-new.

5 Experiments and Results

In this section, we empirically evaluate the four baseline algorithms as solutions for the hyperpa-
rameter transfer across adjustments problem. Our main experimental focus is on the speedup of
the transfer strategies over TPE. Further, in Appendix F we show the results of a control study that
compares TPE with different ranges of random seeds; and in Appendix G we compare random search
to TPE. We first describe the benchmark scenarios and evaluation protocol used through all studies,
and then present the results.

Benchmarks In our experiments we use eight benchmarks described in the following. As is common
in hyperparameter optimization research, we employ tabular and surrogate benchmarks to allow
computationally feasible benchmarking (Perrone et al., 2018; Falkner et al., 2018). Tabular bench-
marks provide a lookup table for all possible hyperparameter settings, whereas surrogate benchmarks
model the objective function (Eggensperger et al., 2014). We base our benchmarks on four existing
hyperparameter optimization (HPO) benchmarks (Perrone et al., 2018; Klein and Hutter, 2019; Dong
and Yang, 2019), which amount to four different algorithms: a fully connected neural network
(FCN), neural architecture search for a convolutional neural network (NAS), a support vector machine
(SVM), and XGBoost (XGB). For each of these base benchmarks, we consider two different types of
adjustments (Table 1) to arrive at a total of eight benchmarks. Additionally, for each algorithm and
adjustment we consider multiple tasks. We refer the reader to Appendix C for additional details on
the benchmarks.

Evaluation Protocol We repeated all measurements across 100 different random seeds and report
results for validation objectives, as not all benchmarks make test objectives available, and to reduce
noise in our evaluation. We measured how much faster an approach A reaches a given objective value
compared to approach B in terms of number of evaluations. We terminate runs after 400 evaluations
and report ratio of means. To aggregate these ratios across tasks and benchmarks, we use the
geometric mean. To determine the target objective values, we measured TPE’s average performance
for 10, 20, and 40 evaluations. Further, for transfer approaches, we perform this experiment for
different evaluation budgets for the HPO before the adjustments (also for 10, 20, and 40 evaluations).
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Table 1: Developer adjustments in our benchmarks.
Benchmark Adjustments

FCN-A Increase #units-per-layer 16×; Double #epochs; Fix batch size hyperparameter
FCN-B Introduce per-layer choice of activation function;

Change learning rate schedule from constant to cosine decay

NAS-A Add 3x3 average pooling as choice of operation to each edge
NAS-B Add node to cell template (adds 3 hyperparameters)

XGB-A Expose four booster hyperparameters
XGB-B Change four unexposed booster hyperparameter values

SVM-A Change kernel; Remove hyperparameter for old kernel;
Introduce hyperparameter for new kernel

SVM-B Increase range for cost hyperparameter

Results Transfer TPE (T2PE), best-first, and their combination, lead to large speedups, while drop-
unimportant and only-optimize-new perform poorly. On average and depending on the budgets for
the old and new HPO, T2PE reaches the given objective values 1.0–1.7x faster than TPE, best-first
1.2–2.6x faster, and their combination 1.2–2.9x faster (Figure 3). There are two main trends visible:
(1) The more optimal the target objective, the smaller the speedup, and (2) the higher the budget for
the previous HPO, the higher the speedup. For a more fine-grained visualization that shows violin
plots over task means for each benchmark, we refer to Appendix D. Even while given 10x the budget
compared to TPE, drop-unimportant and only-optimize-new do not reach the performance of TPE
in a large percentage of cases (20–70%; Appendix E); this makes an evaluation for the speedup
unfeasible.
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Figure 3: Speedup to reach a given reference objective value compared to TPE for best-first, transfer
TPE, and their combination, across 8 benchmarks. The violins estimate densities of benchmark
geometric means. The horizontal line in each violin shows the geometric mean across these benchmark
means. Plots from left to right increase in budget for the pre-adjustment hyperparameter optimization.

6 Conclusion

In this work, we introduced hyperparameter transfer across developer adjustments to improve the
efficiency during the development of machine learning systems. In light of rising energy demands
of machine learning (ML) systems and rising global temperatures, more efficient ML development
practices are an important issue now and will become more important in the future. As already some
of the simple baseline algorithm considered in this work leads to large empirical speedups, our new
framework represents a promising step towards efficient ML development.
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