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Abstract

In this work we introduce a novel meta-learning algorithm that learns to utilize the
gradient information of auxiliary tasks to improve the performance of a model on
a given primary task. Our proposed method learns to project gradients from the
auxiliary tasks to the primary task from a small training set with “parallel labels,”
i.e., examples annotated with respect to both the primary task and the auxiliary
tasks. This strategy enables the learning of models with strong performance on
the primary task by leveraging a large collection of auxiliary examples and few
primary examples. Our scheme differs from methods for transfer learning, multi-
task learning or domain adaptation in several ways: unlike naïve transfer learning,
our strategy uses auxiliary examples to directly optimize the model with respect
to the primary task instead of the auxiliary task; unlike hard-sharing multi-task
learning methods, our algorithm devotes the entire capacity of the backbone model
to attend the primary task instead of splitting it over multiple tasks; unlike most
domain adaptation techniques, our scheme does not require any overlap in labels
between the auxiliary and the primary task, thus enabling knowledge transfer
between completely disjoint tasks. Experiments on two image analysis benchmarks
involving multiple tasks demonstrate the performance improvements of our meta-
learning scheme over naïve transfer learning, multi-task learning as well as prior
related work.

1 Introduction

Transfer learning [8] has emerged as a powerful methodology to enable the use of deep models in
domains with scarce labeled data. The idea is to pretrain the model on a related domain where data is
plentiful, and then transfer useful information to the target domain either by finetuning or by training
a lightweight model on top of the pretrained features. This simple strategy has enabled remarkable
state-of-the-art results to be achieved in small-data regimes across different fields, including computer
vision [15], natural language processing [46], and robotics [47]. However, because the pretraining
stage optimizes the model solely on the auxiliary task, the effectiveness of this approach lies on the
shoulder of the human expert who must find an auxiliary task that makes the pretraining procedure
directly beneficial for the final training on the target task.

In this work instead we propose a meta-learning procedure that explicitly models the relationship
between tasks and enables the auxiliary examples to be used to optimize the model with respect to the
target task rather than the auxiliary task. The relationship between tasks is meta-learned from a small
training set with “parallel labels,” i.e., examples annotated with respect to both the primary task and
the auxiliary tasks. The parallel labels are used to learn how to transform the gradients computed from
auxiliary examples in order to make them beneficial for the primary task. The gradient transformation
is implemented by a low-rank linear projection that effectively aligns the backpropagation updates of
the auxiliary task to those of the primary task. The intuition is that we can harness information from
label spaces that are easier to annotate to improve performance on tasks where labels are costly to
obtain.
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As further discussed in our technical section, our approach adopts the multi-head network architecture
commonly used for multi-task learning, where a single backbone common to all tasks splits into
separate branches, each addressing a different task. However, differently from multi-task training, the
learning capacity of the backbone is entirely devoted to the primary task as the gradients backpropa-
gated from the auxiliary branches are transformed into gradients optimized for the primary task before
being backward-passed to the backbone. Our approach differs also from domain adaptation methods,
which assume different data distributions for the source and the target domain but typically require
the two domains to share the same underlying task (we note the exceptions of open-set [32, 37] and
partial-set [52, 3] domain adaptation). Instead, our method is applicable in arbitrary settings involving
tasks defined on the same input space but having disparate output spaces.

2 Related work

As our approach optimizes a model with respect to a primary task by leveraging one or more auxiliary
tasks where training data is abundant, it is closely related to transfer learning methods. In computer
vision, the advantages of transfer learning were first demonstrated in the context of visual recognition
tasks [8, 51, 31, 39, 48]. Yet, recent research [50, 41] has shown that the advantages of transfer
learning extend across a broad range of visual tasks, beyond recognition, even between seemingly
distant tasks. These papers present also approaches that find the best source tasks for a given primary
task. We note that our method is complementary to this line of work, as our focus is on how to best
leverage auxiliary tasks. Our approach differs from methods that aim at preserving good performance
on the original source tasks when adapting the network to the target task [27, 26, 36, 38], since our
technique is specifically designed to optimize performance on the primary task using the auxiliary
tasks as mere means towards this goal.

While pretraining followed by finetuning is the natural approach for transfer learning, our experiments
demonstrate that multi-task learning [5, 35] gives in certain settings superior performance on the
target task. A variety of strategies have been investigated in prior work for the purpose of boosting the
performance of multi-task learning, including task or gradient weighting [17, 6], gradient surgery [49],
attention [22], as well as specialized sharing units [28]. Most multi-task learning methods can be
categorized into two classes: hard-sharing versus soft-sharing [35] of parameters. Models of the
former class have a single backbone shared across all tasks and a specialized network head for each
individual task. The downside of these approaches is that the performance is inherently limited by the
capacity of the backbone that must address all tasks simultaneously and thus it is destined to decay as
the number of tasks is grown beyond a certain value [18]. Reducing the number of shared parameters
decreases this problem but this also decreases the potential benefit of shared supervision from all
tasks. Conversely, multi-task models that rely on soft parameter sharing allow each task to have
distinct parameter but use regularizations to encourage the parameters to be similar. The disadvantage
is that under this strategy the number of parameters grows linearly with the number of tasks. Our
approach is most similar to hard parameter sharing models, since it uses a single backbone. However,
unlike these models, it effectively allocates the entire capacity of the backbone to the primary task,
since the gradients from the auxiliary branches are transformed to optimize performance on the
primary task and thus the auxiliary tasks do not consume the learning capacity of the network. Yet,
because it has a single backbone, it does not suffer from the problem of linear growth of parameters
with the number of tasks that affects soft-sharing models.

We note that the setting considered in our work differs from that typically considered in domain
adaptation [23, 24, 12, 43, 25, 4, 45, 53, 19], where the source domain and the target domain involve
the same task, albeit under different data distributions. Within this area, the work that is closest to our
own is the GradMix approach of [19] which transfers across tasks in addition to domains. Similarly to
our method, GradMix uses gradients from the auxiliary tasks for optimization. GradMix weighs the
auxiliary gradients according to their cosine similarity to gradients computed from a validation set of
primary examples. A similar approach was also studied in the multi-task setting [9]. Although such
weighting was shown to be empirically beneficial, there is no guarantee to aid optimization. Instead,
our approach meta-learns a transformation of the auxiliary gradients that is explicitly optimized to
reduce the loss.

Our meta-learning approach uses a backward-on-backward auto differentiation to compute the second
order derivative. This meta-learning strategy has been adopted in prior work, mostly for the purpose
of few-shot learning [34, 42] and fast model adaption [11] but also in the context of learning to
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optimize [1]. Within the genre of meta-learning methods, the work of [21] is more closely related
to our own, since it leverages auxiliary tasks to improve the performance of a primary task. Meta-
learning is in this case used to automatically generate labels for self-supervised auxiliary tasks
whereas in our work we adopt it for making use of supervised auxiliary gradients in the optimization.

[20] studies how to speed up training for reinforcement learning of a primary task by meta-learning
adaptive weights for the auxiliary losses. Different from this work, we adopt a more complex
projection of gradients than a linear combination, and apply our approach to supervised learning
instead of reinforcement learning. We show in experiments that our projection model outperforms
scalar weighting of auxiliary gradients.
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Figure 1: Overview of our proposed approach
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<latexit sha1_base64="5wCgvPfMVIYruq0KNrYxe/v/zQ8=">AAAB+XicbVDLSsNAFL3xWesr6lKRwSK4KokI6q7qxmUL9gFtCJPppB06eTAzKZSQpX/hxoUibt30O9z5Df6Ek7YLbT0wcDjnXu6Z48WcSWVZX8bS8srq2npho7i5tb2za+7tN2SUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG9zlfnNIhWRR+KBGMXUC3AuZzwhWWnJNE/XctBNg1SeYpzdZ5polq2xNgBaJPSOlytG49v14PK665menG5EkoKEiHEvZtq1YOSkWihFOs2InkTTGZIB7tK1piAMqnXSSPEOnWukiPxL6hQpN1N8bKQ6kHAWenswzynkvF//z2onyr5yUhXGiaEimh/yEIxWhvAbUZYISxUeaYCKYzopIHwtMlC6rqEuw57+8SBrnZfuifF2zS5VbmKIAh3ACZ2DDJVTgHqpQBwJDeIIXeDVS49l4M96no0vGbOcA/sD4+AF9eZdM</latexit>

g0
A

<latexit sha1_base64="eKKwmoC4hu/quYAmu6Sckq+t0nI=">AAAB+XicbVDLSgMxFM3UV62vUZduglV0VWZEUHdVNy4r2Ae0w5BJM21oJjMkmUIJ8yduXCjiUr/BH3Dnb/gBYqbtQlsPBA7n3Ms9OUHCqFSO82kVFhaXlleKq6W19Y3NLXt7pyHjVGBSxzGLRStAkjDKSV1RxUgrEQRFASPNYHCd+80hEZLG/E6NEuJFqMdpSDFSRvJtu+frToRUHyOmL7PsyLfLTsUZA84Td0rK1QPnS79+v9d8+6PTjXEaEa4wQ1K2XSdRnkZCUcxIVuqkkiQID1CPtA3lKCLS0+PkGTw0SheGsTCPKzhWf29oFEk5igIzmYeUs14u/ue1UxWee5ryJFWE48mhMGVQxTCvAXapIFixkSEIC2qyQtxHAmFlyiqZEtzZL8+TxknFPa1c3Lrl6hWYoAj2wD44Bi44A1VwA2qgDjAYgnvwCJ4sbT1Yz9bLZLRgTXd2wR9Ybz+azpge</latexit>

fΘ

<latexit sha1_base64="efta6F32cvUP/fojDayFz4akf8s=">AAAB8XicbZBLSgNBEIZrfMb4irpUZDAIrsKMCOou6MZlAnlhMoSeTk3SpKdn6O4RwpClN3DjQhG3XiDncOcZvISdx0ITf2j4+P8quqr8mDOlHefLWlpeWV1bz2xkN7e2d3Zze/s1FSWSYpVGPJINnyjkTGBVM82xEUskoc+x7vdvx3n9AaVikajoQYxeSLqCBYwSbaz7oJ22Kj3UZNjO5Z2CM5G9CO4M8sWjUfn78XhUauc+W52IJiEKTTlRquk6sfZSIjWjHIfZVqIwJrRPutg0KEiIyksnEw/tU+N07CCS5gltT9zfHSkJlRqEvqkMie6p+Wxs/pc1Ex1ceSkTcaJR0OlHQcJtHdnj9e0Ok0g1HxggVDIzq017RBKqzZGy5gju/MqLUDsvuBeF67KbL97AVBk4hBM4AxcuoQh3UIIqUBDwBC/wainr2Xqz3qelS9as5wD+yPr4AabIlKE=</latexit>

fθA

<latexit sha1_base64="/rXfkIsX/fsGepKysXkJgqK4CuU=">AAACAXicbVDLSsNAFJ3UV62vqBvBTWgRXJVEBHVXdeOygmkLbSiT6aQdOpmEmRuhhLhx4Y+40IUibv0Ld/6HH+Ck7UJbDwxzOOde7r3HjzlTYNtfRmFhcWl5pbhaWlvf2Nwyt3caKkokoS6JeCRbPlaUM0FdYMBpK5YUhz6nTX94mfvNWyoVi8QNjGLqhbgvWMAIBi11zb2gm3ZgQAHrP8QwIJin51mWdc2KXbXHsOaJMyWVWjkIHr7dp3rX/Oz0IpKEVADhWKm2Y8fgpVgCI5xmpU6iaIzJEPdpW1OBQ6q8dHxBZh1opWcFkdRPgDVWf3ekOFRqFPq6Ml9SzXq5+J/XTiA49VIm4gSoIJNBQcItiKw8DqvHJCXAR5pgIpne1SIDLDEBHVpJh+DMnjxPGkdV57h6du1UahdogiLaR2V0iBx0gmroCtWRiwi6Q4/oBb0a98az8Wa8T0oLxrRnF/2B8fEDbk+bPw==</latexit>

x

<latexit sha1_base64="8mrKoxBWXTWdWuw2mo4vdkqWJ60=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIUZEdSDGPTiMQGzQDKEnk5N0qZnobtHDCFP4MWDIl71Ybx7Ed/GznLQxB8aPv6/iq4qPxFcacf5tjILi0vLK9lVe219Y3Mrt71TVXEqGVZYLGJZ96lCwSOsaK4F1hOJNPQF1vze1Siv3aFUPI5udD9BL6SdiAecUW2s8n0rl3cKzlhkHtwp5C8+7PPk/csutXKfzXbM0hAjzQRVquE6ifYGVGrOBA7tZqowoaxHO9gwGNEQlTcYDzokB8ZpkyCW5kWajN3fHQMaKtUPfVMZUt1Vs9nI/C9rpDo49QY8SlKNEZt8FKSC6JiMtiZtLpFp0TdAmeRmVsK6VFKmzW1scwR3duV5qB4V3OPCWdnNFy9hoizswT4cggsnUIRrKEEFGCA8wBM8W7fWo/VivU5KM9a0Zxf+yHr7AUn/kEY=</latexit>

fφ

<latexit sha1_base64="7DuMgip7i+SKnTSbRgZnwR4zjS0=">AAAB73icbZDLSgMxFIbP1FttvVRduglWwVWZEUHdFd24rGAv0A4lk2ba0EwmJplCGfoSblwo4tYX8AV8A3c+iK5NLwtt/SHw8f/nkHNOIDnTxnU/nczS8srqWnY9l9/Y3Nou7OzWdJwoQqsk5rFqBFhTzgStGmY4bUhFcRRwWg/6V+O8PqBKs1jcmqGkfoS7goWMYGOtRthOW7LHRu1C0S25E6FF8GZQLB9+vb0P8t+VduGj1YlJElFhCMdaNz1XGj/FyjDC6SjXSjSVmPRxlzYtChxR7aeTeUfoyDodFMbKPmHQxP3dkeJI62EU2MoIm56ez8bmf1kzMeG5nzIhE0MFmX4UJhyZGI2XRx2mKDF8aAETxeysiPSwwsTYE+XsEbz5lRehdlLyTksXN16xfAlTZWEfDuAYPDiDMlxDBapAgMM9PMKTc+c8OM/Oy7Q048x69uCPnNcfGOWUdg==</latexit>

fθP

<latexit sha1_base64="g0I/+gekJudi5GjRwsKzTVbUp8A=">AAACAXicbVDLSsNAFJ34rPUVdSO4GVoEVyURQd0V3bisYNpCG8JkOmmHTh7M3AglxI0Lf8SFLhRx61+48z/8ACdtF9p6YJjDOfdy7z1+IrgCy/oyFhaXlldWS2vl9Y3NrW1zZ7ep4lRS5tBYxLLtE8UEj5gDHARrJ5KR0Bes5Q8vC791y6TicXQDo4S5IelHPOCUgJY8cz/wsi4MGBD9hwQGlIiskee5Z1atmjUGnif2lFTrlSB4+HaeGp752e3FNA1ZBFQQpTq2lYCbEQmcCpaXu6liCaFD0mcdTSMSMuVm4wtyfKiVHg5iqV8EeKz+7shIqNQo9HVlsaSa9QrxP6+TQnDmZjxKUmARnQwKUoEhxkUcuMcloyBGmhAqud4V0wGRhIIOraxDsGdPnifN45p9Uju/tqv1CzRBCR2gCjpCNjpFdXSFGshBFN2hR/SCXo1749l4M94npQvGtGcP/YHx8QOFOJtO</latexit>

g0A = fφ(gA)

<latexit sha1_base64="bOajNj6/36SksLhJkN/ONKLws9M=">AAACFXicbVDLSsNAFL2pr1pfUZduBotYQUoiBXUhVN24rGAf0IYwmU7aoZMHMxOhhPyEG3/FjQtF3Aru/BsnbRdaPXDhcM693HuPF3MmlWV9GYWFxaXlleJqaW19Y3PL3N5pySgRhDZJxCPR8bCknIW0qZjitBMLigOP07Y3us799j0VkkXhnRrH1AnwIGQ+I1hpyTWPB27aC7AaEszTyyw7RBfI11I8ZFllzjtyzbJVtSZAf4k9I2WYoeGan71+RJKAhopwLGXXtmLlpFgoRjjNSr1E0hiTER7QrqYhDqh00slXGTrQSh/5kdAVKjRRf06kOJByHHi6Mz9Sznu5+J/XTZR/5qQsjBNFQzJd5CccqQjlEaE+E5QoPtYEE8H0rYgMscBE6SBLOgR7/uW/pHVStWvV89tauX41i6MIe7APFbDhFOpwAw1oAoEHeIIXeDUejWfjzXifthaM2cwu/ILx8Q2RRp8Y</latexit>

o = fΘ(x)

<latexit sha1_base64="ktpolmxvuAWeaXBaFJGl2cYXtw4=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0WoICWRgnoQCl48VugXtKFstpt26WYTdjdqif0pXjwo4tVf4s1/47bNQVsfDDzem2Fmnh9zprTjfFsrq2vrG5u5rfz2zu7evl04aKookYQ2SMQj2faxopwJ2tBMc9qOJcWhz2nLH91M/dY9lYpFoq7HMfVCPBAsYARrI/XsQoSuUdBLu/Uh1XhSejzt2UWn7MyAlombkSJkqPXsr24/IklIhSYcK9VxnVh7KZaaEU4n+W6iaIzJCA9ox1CBQ6q8dHb6BJ0YpY+CSJoSGs3U3xMpDpUah77pDLEeqkVvKv7ndRIdXHopE3GiqSDzRUHCkY7QNAfUZ5ISzceGYCKZuRWRIZaYaJNW3oTgLr68TJrnZbdSvrqrFKtnWRw5OIJjKIELF1CFW6hBAwg8wDO8wpv1ZL1Y79bHvHXFymYO4Q+szx/e/ZMP</latexit>

LA = L(fθA(o), y
A)

<latexit sha1_base64="JHEAY8gCYPZAXBIgej+Jh+ntEQQ=">AAACPnicbVC7SgNBFJ2Nrxhfq5Y2g0FIIIRdCaiFELGxsIhgHpDEMDuZTYbMPpi5K4Rlv8zGb7CztLFQxNbSyQPJwwMDZ865l3vvcULBFVjWq5FaWV1b30hvZra2d3b3zP2DmgoiSVmVBiKQDYcoJrjPqsBBsEYoGfEcwerO4Hrk1x+ZVDzw72EYsrZHej53OSWgpY5ZbXkE+pSI+DbpxH+fqyTBl3jGy7nahT4DMl+V5IJ8AQ8f5sR8x8xaRWsMvEzsKcmiKSod86XVDWjkMR+oIEo1bSuEdkwkcCpYkmlFioWEDkiPNTX1icdUOx6fn+ATrXSxG0j9fMBjdbYjJp5SQ8/RlaMl1aI3Ev/zmhG45+2Y+2EEzKeTQW4kMAR4lCXucskoiKEmhEqud8W0TyShoBPP6BDsxZOXSe20aJeKF3elbLkwjSONjtAxyiEbnaEyukEVVEUUPaE39IE+jWfj3fgyvielKWPac4jmYPz8AgSHsLo=</latexit>

LP = L(fθP (fΘ+(φ)(x)), y
P)

<latexit sha1_base64="h5nOT51GM7TtjcSlM0WvpWU7jDg="></latexit>

Θ+
(φ) = Θ

<latexit sha1_base64="IEALBV70IG2nOxjRM2NtweCTS04=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQUUoiBXUhFNy4rNAXNDFMppN26GQSZiZCCVm58VfcuFDErd/gzr9x2mahrQcuHM65l3vv8WNGpbKsb6OwtLyyulZcL21sbm3vmLt7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4o5uJ33kgQtKIN9U4Jm6IBpwGFCOlJc88dJpDotB9epp5acWJh/Qkg9dwpkLPLFtVawq4SOyclEGOhmd+Of0IJyHhCjMkZc+2YuWmSCiKGclKTiJJjPAIDUhPU45CIt10+kYGj7XSh0EkdHEFp+rviRSFUo5DX3eGSA3lvDcR//N6iQou3ZTyOFGE49miIGFQRXCSCexTQbBiY00QFlTfCvEQCYSVTq6kQ7DnX14k7fOqXate3dXK9bM8jiI4AEegAmxwAergFjRAC2DwCJ7BK3gznowX4934mLUWjHxmH/yB8fkDee6Xyg==</latexit>

(fΘ+(φ)(

<latexit sha1_base64="h5nOT51GM7TtjcSlM0WvpWU7jDg="></latexit>

@LP

@Θ+

<latexit sha1_base64="OGGZICGowZpSRVVo1lRt4JX5LSQ=">AAACKHicbVDLSgMxFM3UV62vUZdugkUQlDIjBXVlwY0LFxX6gk4td9JMG5p5kGSEMsznuPFX3Igo0q1fYqYtUlsPBA7nnntz73EjzqSyrLGRW1ldW9/Ibxa2tnd298z9g4YMY0FonYQ8FC0XJOUsoHXFFKetSFDwXU6b7vA2qzefqJAsDGpqFNGOD/2AeYyA0lLXvHE8ASRxIhCKAceOD2pAgCf33eSXV9M0xemcqTagCh6TszTtmkWrZE2Al4k9I0U0Q7Vrvju9kMQ+DRThIGXbtiLVSbLJhNO04MSSRkCG0KdtTQPwqewkk0NTfKKVHvZCoV+g8ESd70jAl3Lku9qZ7S4Xa5n4X60dK++qk7AgihUNyPQjL+ZYhThLDfeYoETxkSZABNO7YjIAnZzS2RZ0CPbiycukcVGyy6Xrh3Kxcj6LI4+O0DE6RTa6RBV0h6qojgh6Rq/oA30aL8ab8WWMp9acMes5RH9gfP8Ak3GoEw==</latexit>

@LP

@φ
=

@LP

@Θ+
·
@Θ+

@φ

<latexit sha1_base64="uV518Wo72Vfd9qzscBMC5SiAGCw="></latexit>

forward pass

backward pass

active network

freezed network

fθP

<latexit sha1_base64="g0I/+gekJudi5GjRwsKzTVbUp8A=">AAACAXicbVDLSsNAFJ34rPUVdSO4GVoEVyURQd0V3bisYNpCG8JkOmmHTh7M3AglxI0Lf8SFLhRx61+48z/8ACdtF9p6YJjDOfdy7z1+IrgCy/oyFhaXlldWS2vl9Y3NrW1zZ7ep4lRS5tBYxLLtE8UEj5gDHARrJ5KR0Bes5Q8vC791y6TicXQDo4S5IelHPOCUgJY8cz/wsi4MGBD9hwQGlIiskee5Z1atmjUGnif2lFTrlSB4+HaeGp752e3FNA1ZBFQQpTq2lYCbEQmcCpaXu6liCaFD0mcdTSMSMuVm4wtyfKiVHg5iqV8EeKz+7shIqNQo9HVlsaSa9QrxP6+TQnDmZjxKUmARnQwKUoEhxkUcuMcloyBGmhAqud4V0wGRhIIOraxDsGdPnifN45p9Uju/tqv1CzRBCR2gCjpCNjpFdXSFGshBFN2hR/SCXo1749l4M94npQvGtGcP/YHx8QOFOJtO</latexit>

x

<latexit sha1_base64="8mrKoxBWXTWdWuw2mo4vdkqWJ60=">AAAB6HicbZDJSgNBEIZr4hbHLerRS2MQPIUZEdSDGPTiMQGzQDKEnk5N0qZnobtHDCFP4MWDIl71Ybx7Ed/GznLQxB8aPv6/iq4qPxFcacf5tjILi0vLK9lVe219Y3Mrt71TVXEqGVZYLGJZ96lCwSOsaK4F1hOJNPQF1vze1Siv3aFUPI5udD9BL6SdiAecUW2s8n0rl3cKzlhkHtwp5C8+7PPk/csutXKfzXbM0hAjzQRVquE6ifYGVGrOBA7tZqowoaxHO9gwGNEQlTcYDzokB8ZpkyCW5kWajN3fHQMaKtUPfVMZUt1Vs9nI/C9rpDo49QY8SlKNEZt8FKSC6JiMtiZtLpFp0TdAmeRmVsK6VFKmzW1scwR3duV5qB4V3OPCWdnNFy9hoizswT4cggsnUIRrKEEFGCA8wBM8W7fWo/VivU5KM9a0Zxf+yHr7AUn/kEY=</latexit>

fφ

<latexit sha1_base64="7DuMgip7i+SKnTSbRgZnwR4zjS0=">AAAB73icbZDLSgMxFIbP1FttvVRduglWwVWZEUHdFd24rGAv0A4lk2ba0EwmJplCGfoSblwo4tYX8AV8A3c+iK5NLwtt/SHw8f/nkHNOIDnTxnU/nczS8srqWnY9l9/Y3Nou7OzWdJwoQqsk5rFqBFhTzgStGmY4bUhFcRRwWg/6V+O8PqBKs1jcmqGkfoS7goWMYGOtRthOW7LHRu1C0S25E6FF8GZQLB9+vb0P8t+VduGj1YlJElFhCMdaNz1XGj/FyjDC6SjXSjSVmPRxlzYtChxR7aeTeUfoyDodFMbKPmHQxP3dkeJI62EU2MoIm56ez8bmf1kzMeG5nzIhE0MFmX4UJhyZGI2XRx2mKDF8aAETxeysiPSwwsTYE+XsEbz5lRehdlLyTksXN16xfAlTZWEfDuAYPDiDMlxDBapAgMM9PMKTc+c8OM/Oy7Q048x69uCPnNcfGOWUdg==</latexit>

yA

<latexit sha1_base64="QLgP9TiFtLtZt8JpwCXKMTCUyKU=">AAAB+XicbVDLSsNAFL2pr1pfUZeKBIvgqiQiqLuqG5ct2Ae0sUymk3boZBJmJoUQuvQv3LhQxK2bfoc7v8GfcNJ2oa0HBg7n3Ms9c7yIUals+8vILS2vrK7l1wsbm1vbO+buXl2GscCkhkMWiqaHJGGUk5qiipFmJAgKPEYa3uA28xtDIiQN+b1KIuIGqMepTzFSWuqYZvKQtgOk+hix9Ho0KnTMol2yJ7AWiTMjxfLhuPr9eDSudMzPdjfEcUC4wgxJ2XLsSLkpEopiRkaFdixJhPAA9UhLU44CIt10knxknWila/mh0I8ra6L+3khRIGUSeHoyCynnvUz8z2vFyr90U8qjWBGOp4f8mFkqtLIarC4VBCuWaIKwoDqrhftIIKx0WVkJzvyXF0n9rOScl66qTrF8A1Pk4QCO4RQcuIAy3EEFaoBhCE/wAq9Gajwbb8b7dDRnzHb24Q+Mjx97MpdH</latexit>

gA

<latexit sha1_base64="5wCgvPfMVIYruq0KNrYxe/v/zQ8=">AAAB+XicbVDLSsNAFL3xWesr6lKRwSK4KokI6q7qxmUL9gFtCJPppB06eTAzKZSQpX/hxoUibt30O9z5Df6Ek7YLbT0wcDjnXu6Z48WcSWVZX8bS8srq2npho7i5tb2za+7tN2SUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG9zlfnNIhWRR+KBGMXUC3AuZzwhWWnJNE/XctBNg1SeYpzdZ5polq2xNgBaJPSOlytG49v14PK665menG5EkoKEiHEvZtq1YOSkWihFOs2InkTTGZIB7tK1piAMqnXSSPEOnWukiPxL6hQpN1N8bKQ6kHAWenswzynkvF//z2onyr5yUhXGiaEimh/yEIxWhvAbUZYISxUeaYCKYzopIHwtMlC6rqEuw57+8SBrnZfuifF2zS5VbmKIAh3ACZ2DDJVTgHqpQBwJDeIIXeDVS49l4M96no0vGbOcA/sD4+AF9eZdM</latexit>

g0
A

<latexit sha1_base64="eKKwmoC4hu/quYAmu6Sckq+t0nI=">AAAB+XicbVDLSgMxFM3UV62vUZduglV0VWZEUHdVNy4r2Ae0w5BJM21oJjMkmUIJ8yduXCjiUr/BH3Dnb/gBYqbtQlsPBA7n3Ms9OUHCqFSO82kVFhaXlleKq6W19Y3NLXt7pyHjVGBSxzGLRStAkjDKSV1RxUgrEQRFASPNYHCd+80hEZLG/E6NEuJFqMdpSDFSRvJtu+frToRUHyOmL7PsyLfLTsUZA84Td0rK1QPnS79+v9d8+6PTjXEaEa4wQ1K2XSdRnkZCUcxIVuqkkiQID1CPtA3lKCLS0+PkGTw0SheGsTCPKzhWf29oFEk5igIzmYeUs14u/ue1UxWee5ryJFWE48mhMGVQxTCvAXapIFixkSEIC2qyQtxHAmFlyiqZEtzZL8+TxknFPa1c3Lrl6hWYoAj2wD44Bi44A1VwA2qgDjAYgnvwCJ4sbT1Yz9bLZLRgTXd2wR9Ybz+azpge</latexit>

fΘ

<latexit sha1_base64="efta6F32cvUP/fojDayFz4akf8s=">AAAB8XicbZBLSgNBEIZrfMb4irpUZDAIrsKMCOou6MZlAnlhMoSeTk3SpKdn6O4RwpClN3DjQhG3XiDncOcZvISdx0ITf2j4+P8quqr8mDOlHefLWlpeWV1bz2xkN7e2d3Zze/s1FSWSYpVGPJINnyjkTGBVM82xEUskoc+x7vdvx3n9AaVikajoQYxeSLqCBYwSbaz7oJ22Kj3UZNjO5Z2CM5G9CO4M8sWjUfn78XhUauc+W52IJiEKTTlRquk6sfZSIjWjHIfZVqIwJrRPutg0KEiIyksnEw/tU+N07CCS5gltT9zfHSkJlRqEvqkMie6p+Wxs/pc1Ex1ceSkTcaJR0OlHQcJtHdnj9e0Ok0g1HxggVDIzq017RBKqzZGy5gju/MqLUDsvuBeF67KbL97AVBk4hBM4AxcuoQh3UIIqUBDwBC/wainr2Xqz3qelS9as5wD+yPr4AabIlKE=</latexit>

fθA

<latexit sha1_base64="/rXfkIsX/fsGepKysXkJgqK4CuU=">AAACAXicbVDLSsNAFJ3UV62vqBvBTWgRXJVEBHVXdeOygmkLbSiT6aQdOpmEmRuhhLhx4Y+40IUibv0Ld/6HH+Ck7UJbDwxzOOde7r3HjzlTYNtfRmFhcWl5pbhaWlvf2Nwyt3caKkokoS6JeCRbPlaUM0FdYMBpK5YUhz6nTX94mfvNWyoVi8QNjGLqhbgvWMAIBi11zb2gm3ZgQAHrP8QwIJin51mWdc2KXbXHsOaJMyWVWjkIHr7dp3rX/Oz0IpKEVADhWKm2Y8fgpVgCI5xmpU6iaIzJEPdpW1OBQ6q8dHxBZh1opWcFkdRPgDVWf3ekOFRqFPq6Ml9SzXq5+J/XTiA49VIm4gSoIJNBQcItiKw8DqvHJCXAR5pgIpne1SIDLDEBHVpJh+DMnjxPGkdV57h6du1UahdogiLaR2V0iBx0gmroCtWRiwi6Q4/oBb0a98az8Wa8T0oLxrRnF/2B8fEDbk+bPw==</latexit>

g0A = fφ(gA)
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Figure 2: IIlustration of the graph workflow of our
approach

3 Technical Approach

3.1 Problem Statement

In this section, we introduce our method, which we name “Task Meta-Transfer” (TMT). We first
formally introduce the problem of Task Transfer. Let X and XA be two sets of training input
examples, such that X ⊂ XA. We assume that all examples in X are labeled with respect to both
the primary task and the auxiliary task. Thus, each example xi ∈ X has both a primary-task label
yPi ∈ Y

P and an auxiliary-task label yAi ∈ Y
A. Instead, each input example xj ∈ X

A − X is

labeled with an auxiliary-task label yAj ∈ Y
A only. Note that while the primary task and the auxiliary

task are defined on the same input space (e.g., the space of all natural images, or the space of all
English documents), they need not share any labels, i.e., YP and YA may be disjoint. In fact, we
will present results for cases where one task involves regression to a continuous space (e.g., scene
depth estimation from a single photo) while the other is classification (e.g., image categorization).
Our only underlying assumption is that the tasks are loosely related such that gradients computed for
the auxiliary task may be “transformed” into gradients useful to optimize the model with respect to
the primary task. We stress that the sole objective of this work is to obtain a model that performs well
on the primary task.

3.2 Approach Overview

We adopt a two-headed network with hard parameter sharing [35] as our architecture. The first part
of the network is shared between the two tasks and computes a feature tensor fΘ(x) from input
x. We refer to this part of the model as the backbone. The features computed from the backbone
are passed as input to two separate branches, an auxiliary network fθA and a primary network fθP ,
which compute separate predictions for each task. While this type of architecture is commonplace in
multi-task learning, the novelty in our approach lies in the training procedure, which is illustrated
in Figure 1 and Figure 2. Let gA be the gradient backpropagated from the auxiliary branch at
the bifurcation (i.e., the layer where the backbone splits into the task-specific branches). Directly
backward-passing gA (as traditionally done in multi-task learning) would update the backbone to
benefit the auxiliary task. Instead, we propose to transform the auxiliary gradient into a new gradient
vector g′

A
that yields improvements for the primary task. The projected gradient g′

A
is computed from

gA using a meta-learned model gradient projection fφ, i.e., g′
A
= fφ(gA). The meta-learning step
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leverages the small set of example X that are annotated with respect to both tasks. This step explicitly
optimizes gradient projection fφ to ‘transform” (or “project”) gradients computed for the auxiliary
task into gradients optimizing the backbone for the primary task. We discuss the meta-learning step
in Subsection: 3.3. The gradient projection fφ makes it possible to use the large set of examples

in XA to learn a good backbone representation for the primary task. We describe this second step
in Subsection: 3.4. In practice, during optimization we alternate between one meta-learning step
(using a mini-batch sampled from X ) and k consecutive update steps from the auxiliary task (using
k mini-batches sampled from XA). The hyper-parameter k is chosen via hold-out validation and
is further discussed in our experimental section. Each update from the auxiliary task modifies the
auxiliary branch and, more importantly, the backbone to benefit the primary task. We note that our
approach can be used with any arbitrary choice of parameterized mapping gradient projection fφ
preserving the dimensionality of the input. In Subsection: 3.5 we discuss our specific choice of
parameterized function fφ.

3.3 Meta-Learning from Parallel Labels

The learning of gradient projection fφ is through a meta-loss on the set of examples X for which
parallel labels are available. Let us consider a single mini-batch sample x ∈ X , with corresponding
labels yP ∈ YP and yA ∈ YA. We pass x forward through the backbone fΘ to compute the
backbone activation o = fΘ(x) at the bifurcation. We then forward o into auxiliary network fθA to
calculate the loss LA with respect to the auxiliary task: LA = L(fθA(o), y

A)

Let gA denote the gradient of LA with respect to the activation o: gA = ∇oLA

This gradient is computed via traditional backpropagation by backward-passing the gradients from
the loss LA through the layers of auxiliary network fθA until reaching the bifurcation layer. We refer
to this gradient as the auxiliary gradient.

Using this gradient would cause the backbone to be optimized with respect to the auxiliary task.
Instead, we transform the auxiliary gradient into a new gradient vector g′

A
= fφ(gA) before backward-

passing it to update the parameters Θ of the backbone:

Θ+ = Θ− αg′A
∂o

∂Θ
= Θ− αfφ(∇oLA)∇Θo (1)

Note that Θ+ is now a function of φ, i.e., Θ+ = Θ+(φ). We then start a second forward pass
propagating the same mini-batch into backbone fΘ+ and primary network fθP to calculate the loss
LP for the primary task:

LP = L(fθP (fΘ+(φ)(x)), y
P) (2)

Finally, we update gradient projection fφ with respect to this loss:

φ←− φ− β∇φLP (3)

←− φ− β∇Θ+LP∇φΘ
+ (4)

Updating the Network with Primary Labels. The meta-learning step is carried out over a mini-batch
of examples in X , which include annotations with primary labels in YP . Thus, while carrying out
the meta-learning step, we keep primary network fθP and backbone fΘ updated with traditional
backpropagation using the primary loss from Eq. (2).

3.4 Learning from Auxiliary Data

This step uses (i) a mini-batch sampled for the auxiliary task (i.e., defined over examples x ∈ XA

with corresponding labels yA ∈ YA) and (ii) the current estimate of the gradient projection mapping
fΘ, in order to update the backbone in a way that is beneficial for the primary task. First, a standard
forward pass is performed through backbone fΘ to compute activation o = fΘ(x), and auxiliary
network fθA to calculate the loss with respect to the auxiliary task: LA = L(fθA(o), y

A)

The subsequent backward pass is split into two parts. Traditional backpropagation on the auxiliary

branch to keep auxiliary network updated using the auxiliary loss: θA ←− θA − α∂LA

∂θA
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However, at the split the gradient is transformed using the current projection fφ in order to update the
backbone with respect to the primary task. In other words, instead of updating the backbone with
respect to the auxiliary task:

Θ←− Θ− αgA
∂o

∂Θ
, gA = ∇oLA (5)

Our procedure backward-passes the projected gradient g′
A
= fφ(gA): Θ←− Θ− αg′

A
∂o
∂Θ

3.5 Gradient Projection Model

The gradient projection fφ can be any learnable parametric mapping preserving the input dimensional-
ity. Our experiments show that simple linear projections can transform the auxiliary gradients so as to
benefit the primary task (see Figure 3, which shows that increasing further the model complexity does
not produce gains on most tasks. Thus, we consider a generic projection matrix φ ∈ R

C×C such that
g′
A
= fφ(gA) = φ · gA where C is the dimensionality (i.e., the number of neurons) of the bifurcation

layer. In the case of a convolutional network, we define C to be number of convolutional feature
maps of the bifurcation layer and implement the linear projection via 1× 1 point-wise convolution.

This projection model involves C2 parameters to be meta-learned via second-order differentiation. As
demonstrated in our empirical evaluation, this optimization is quite challenging. In practice we found
advantageous to constrain the form of the projection and further reduce the number of parameters to
be meta-learned. We achieve this goal by parameterizing the projection matrix φ as φ = Λ+ UU⊤

where Λ = diag(λ1, . . . , λC) is a diagonal matrix and U ∈ R
C×r. This effectively constrains the

matrix UU⊤ to have rank r < C and reduces the number of meta-parameters to C + rC.

In the case of multiple auxiliary tasks (say, T > 1 auxiliary tasks), we define a separate projection
model φt for each auxiliary taskAt and compute the gradient g′

A
by summing the projected gradients

of all auxiliary tasks:

g′A = fφ1,...,φT
(gA1

, . . . , gAT
) =

T∑

t=1

φt · gAt
(6)

We note that, despite its simplicity, this strategy enables learning the relative importance of the
auxiliary gradients that are fused into the projected gradient g′

A
.

4 Experiments

4.1 Datasets

NYUv2 [30] is an indoor dataset where each image is annotated with respect to three tasks: the 13-
class semantic segmentation from [2], as well as the depth estimation and surface normal estimation
from [10]. We report the results for all the possible primary-auxiliary tasks. We use 795 images for
training, 327 for validation, and 327 for testing. We simulate a scenario where limited labels for the
primary task are available by assuming that the set of parallel examples X is a small subset of the
entire training set, while the auxiliary training set XA consists of all 795 examples. CityScapes [7]
is mainly used for semantic urban scene understanding. We use 2975 images for training, 250 for
validation and 250 for testing. Our experiments include auxiliary-primary task-pairs obtained from
the tasks of inverse depth estimation, 7-class segmentation and 19-class segmentation [22]. More
details can be found in supplementary material.

4.2 Network Architectures

We utilize two different encoder-decoder architectures for pixel-level prediction: SplitVGG and
SplitRes, based on VGG16 [40] and ResNet18 [14], respectively. To construct a two-headed model,
we introduce a split at a particular block of the decoder, and create two separate copies of all
subsequent layers (i.e., two branches), one branch devoted to the auxiliary task and the other to the
primary task. Thus, the part of the network before the split constitutes the backbone fΘ. We report
results obtained for different positions of the split in the network. We denote with SplitVGG-x and
SplitRes-x the models obtained by splitting the network at the x-th block of the decoder. For example,
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SplitVGG-3 indicates a network where the backbone consists of the encoder and the first 2 blocks of
the decoder. Further details about the architectures and training can be found in the supplementary
material.

Table 1: Test performance of different models (average of 3 runs) on NYUv2 dataset using different pairs of
primary and auxiliary tasks with two distinct architectures (SplitVGG-3 and SplitRes-3). The statistical variance
and hyper-parameters learned via validation is provided in supplementary material. The best performing models
are shown in bold, the second best are underlined. Our TMT outperforms other methods on 8 out of the 12 cases,
and ranks second best in 2 cases. In the remaining 2 cases, TMT achieves performance comparable to the best
methods.

Tasks Primary

Only

Transfer

Learning

MTL Kendall

et al.

[17]

Du

et al.

[9]

Lin

et al.

[20]

TMT

(ours)

Oracle

Primary Auxiliary

S
p
li

tV
G

G
-3

Semantic

(IoU ↑)

Depth
12.87

13.48 14.11 13.77 13.72 13.70 15.13
18.23

Normal 14.43 14.04 14.60 13.68 13.80 16.74

Depth

(102×AbsError↓)

Semantic
81.89

70.55 70.03 71.55 71.59 70.06 69.41
64.14

Normal 71.62 71.18 73.54 74.09 70.59 68.74

Normal

(AngleDist↓)

Semantic
40.51

37.70 35.79 36.39 35.60 36.40 35.71
32.97

Depth 37.65 36.60 36.97 37.19 36.83 36.92

S
p
li

tR
es

-3

Semantic

(IoU ↑)

Depth
11.14

12.20 13.07 12.16 12.89 13.15 13.41
15.94

Normal 12.15 13.96 12.58 12.75 13.09 14.10

Depth

(102×AbsError↓)

Semantic
81.34

74.48 73.24 77.62 74.48 73.03 72.18
68.52

Normal 74.61 75.15 79.95 75.76 74.68 73.17

Normal

(AngleDist↓)

Semantic
41.24

40.83 38.21 40.03 38.12 38.67 38.45
36.61

Depth 40.28 38.58 40.67 38.86 39.04 38.78

4.3 Baselines

Primary Only is single-task learning with primary labels in X . The method does not utilize any
auxiliary information.

Transfer Learning consists of first pre-training the model on the large auxiliary dataset XA and then
fine-tuning it on the primary task using the labels in X . We use early-stopping for both pre-training
and fine-tuning, by measuring validation performance on the auxiliary task for pre-training and
validation performance on the primary task for finetuning.

Multi-Task Learning (MTL) is the joint training of the entire model with respect to both the primary
and the auxiliary tasks. We consider two hard-sharing MTL baselines [17, 9], since their architectures
are closer to our model compared to those of soft-sharing models. In addition, we include a weighted
hard sharing MTL model [35]. The mini-batches sampled from XA are used to update only the
auxiliary and the backbone networks using the auxiliary loss, while the mini-batches sampled from
X (for which parallel labels are available) induce backpropagation through both branches (using both
losses) as well as the backbone. Because the subset of examples with parallel labels is much smaller
than the auxiliary dataset, we found experimentally beneficial to alternate one mini-batch from X
every k consecutive mini-batches sampled from XA. The hyper-parameter k ∈ {1, 2, 3, . . . , 10}
is chosen via hold-out validation with respect to validation performance on the primary task. This
sampling strategy effectively implements a form of task weighting, which is quite common in
multi-task settings. Furthermore, this renders this approach more similar to our own method, with
the difference being that our TMT uses a meta-learned gradient projection matrix to transform the
gradient from the auxiliary branch to the backbone, while multi-task learning is equivalent to using
TMT with a fixed identity matrix for gradient projection. This direct comparison makes it possible to
assess the true value of the meta-learning step.

Uncertainty Task Weighting [17] is a MTL method that treats the weighting of each task as a
learnable parameter. This work shows strong performance on the full NYUv2 dataset. Instead, our
setting involves few primary examples and many auxiliary examples. Thus, we adapt this method to
our setting as follows: we alternate the training between (1) training with Uncertainty Task Weighting
using examples that have labels for both the primary and the auxiliary task and (2) standard training
using auxiliary examples. To get the best results, we search over the values of hyper-parameter k to
control how often we alternate between these two steps.
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Du et al. [9] aim at minimizing the primary loss by weighting the auxiliary loss using cosine similarity
between the gradients of tasks. Using cosine similarity to weight gradients has been also explored by
GardMix in domain adaptation [19], and multi-task learning [49]. Due to the imbalance of X and
XA, we find it is beneficial to modify their method by alternating one mini-batch from X every k
consecutive mini-batches sampled from XA, as we do for Multi-Task Learning described above.

Meta Task Weighting has been studied for speeding up reinforcement learning in [20]. The approach
effectively learns a scalar weighting for the individual tasks. We apply this approach to the supervised
learning setting considered in this paper.

Oracle is single-task learning using a dataset with primary labels for all examples in XA. This
represents an upper bound performance, as the method has access to primary supervision for all
examples instead of for only a subset.

4.4 Results

Table 2: Performance of various models (average of
3 runs) on CityScapes dataset using different pairs of
primary and auxiliary tasks with SplitVGG-3

Primary
class-7

(IoU ↑)

class-19

(IoU ↑)

Depth

(102×AbsError↓)

Auxiliary Depth class-7 class-19

Primary Only 37.42 18.30 2.31 2.31

Transfer Learning 38.00 19.11 2.02 2.01

MTL 39.21 21.52 1.83 1.83

Kendall et al. [17] 39.25 20.90 2.25 2.23

Du et al. [9] 38.53 20.87 1.82 1.82

Lin et al. [20] 39.08 20.96 1.85 1.86

TMT (ours) 39.48 21.28 1.80 1.78

Oracle 45.90 24.83 1.74

Table 3: Primary-task performance on the test set of
NYUv2 using two auxiliary tasks with SplitVGG-3 ar-
chitecture

Primary Semantic (S) Depth (D) Normal (N)

(IoU ↑) (102×AbsError↓)(AngleDist↓)

Auxiliary D + N S + N S + D

Transfer Learning 15.30 69.25 35.79

MTL 15.47 67.32 34.74

TMT (ours) 16.59 66.84 35.01

Single Auxiliary Task. We study the performance of SplitVGG-3 and SplitRes-3 on NYUv2 with
a parallel dataset set to be 10% of the auxiliary dataset. We report the test results in Table 1 with the
error of each method averaged over three separate training runs. As described in Subsection: 3.5, the
rank r controls the complexity of our gradient projection fφ. The reported results are computed by
selecting the best r for each primary-auxiliary pair according to the performance on the validation
set. Similarly, MTL are multi-task learning models trained where the hyper-parameter k is optimized
based on the validation performance. [17] and [9] are two advanced MTL methods that work well on
datasets where the number of examples of the different tasks are balanced, but suffer in the scenario
where the primary task labels are scarce. Our TMT outperforms other methods on 8 out of the 12
cases, and ranks second best in 2 cases. In the remaining 2 cases, TMT is close to the best methods.
Note that the comparison between TMT and MTL shows the value of a learnable projection matrix
over a fixed identity projection. Instead, the comparison between TMT and Meta Task Weighting in
[20], TMT shows the advantage of a more complex meta-learnable projection matrix compared to
a simple weighting scalar. We stress that our setup is different from that considered by most prior
works evaluated on these benchmarks [29, 13, 16, 33, 44], since the methods in our experiments
have access to only 10% of the primary labels in the datasets. As a result the absolute performances
are not comparable to those reported in prior works that use 100% of the labels.

The improvement of performance compared to multi-task learning is particularly large on depth using
normal, and semantic using normal. These results underscore the importance of transforming the
auxiliary gradient using the meta-learned projection as opposed to directly backpropagating it, as
done in multi-task learning. [9] produces larger errors in 10 out of 12 cases compared to multi-task
learning. This is because when auxiliary tasks are only loosely related to the primary task, the
weighting of auxiliary loss by cosine similarity between auxiliary and primary tasks is either too small
or negative. The small or negative weighting of auxiliary loss in [9] will opt to utilize few auxiliary
examples to help the primary training. All 6 methods leveraging auxiliary data outperform by large
margins “Primary Only” which learns the model using only primary data. Table 2 reports analogous
results on CityScapes. Even on CityScapes, TMT does overall better than multi-task learning and
consistently improves over transfer learning and training from only primary data.
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Multiple Auxiliary Tasks. Our method can be applied in scenarios involving multiple auxiliary
tasks by simply averaging the projected gradients (see Eq. (6)). We similarly adapt the baseline of
multi-task learning to perform joint training over the multiple auxiliary tasks and the primary task.
Table 3 shows a comparison between these two approaches using two auxiliary tasks to improve
performance on the primary task. It can be noticed that, compared to using a single auxiliary task
(see Table 1), leveraging two auxiliary tasks yields consistently better performance for both TMT and
multi-task learning.

4.5 Robustness Study of the Experiments

Different Ranks of Projection Model. The number of parameters in the gradient projection fφ is
controlled by the rank r of the matrix U . When fφ contains too few parameters, the projection matrix
may not be complex enough to properly transform the auxiliary gradients. Conversely, we found that
when fφ is over-parameterized, the optimization in the meta-learning step becomes difficult given
the small size of the parallel dataset (see supplementary material). We study the effect of different
ranks r on NYUv2. The output tensor of the backbone fΘ for this network has 128 channels. Thus,
we vary the ranks from 5 to 100. In Figure 3 for nearly all primary-auxiliary pairs the performance
of TMT remains relatively unperturbed by the choice of rank. This implies that we need to choose
the number of parameters in the gradient projection fφ wisely, depending on the complexity of the
transformation required to adapt the auxiliary gradients.
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Figure 3: Varying the rank r of the matrix
defining the gradient transformation fφ.
The y-axis shows the relative-error reduc-
tion for TMT compared to Primary Only
on the test set of NYUv2 with SplitVGG-3.
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Figure 4: Studying how the number of parallel labels affects the
error on the test set of NYUv2 using SplitVGG-3. TMT outper-
forms multi-task learning under all different training settings.

Different Splitting Blocks. The splitting position in the network affects dramatically the number of
parameters shared by the tasks. For example, while in SplitVGG-2 only 98% of the parameters reside
in the backbone, in SplitVGG-5 50% of the parameters are devoted to the backbone. Figure 5 shows
how the position of the split affects the performance of transfer learning, multiple-task learning, and
TMT.
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Figure 5: Bar plots show the primary-task errors obtained on NYUv2 for different positions of the splitting
between the backbone and the task-specific branches. For the primary tasks of depth estimation and semantic
segmentation, TMT does consistently better than the baselines.

Different Amounts of Parallel Labels. We now consider how performance varies as we set the the
number of parallel labels X to be 10%, 20%, 33% or 50% of the auxiliary dataset XA. Figure 4
shows a comparison between multi-task learning (weighted) and TMT, highlighting the lower error
achieved with TMT under all these different experimental settings.
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