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Abstract

In recent years there has been substantial progress in few-shot learning, where a
model is trained on a small labeled dataset related to a specific task, and in continual
learning, where a model has to retain knowledge acquired on a sequence of datasets.
However, the field has still to frame a suite of benchmarks for the hybrid setting
combining these two paradigms, where a model is trained on several sequential few-
shot tasks, and then tested on a validation set stemming from all those tasks. In this
paper we propose such a setting, naming it Continual Few-Shot Learning (CFSL).
We first define a theoretical framework for CFSL, then we propose a range of
flexible benchmarks to unify the evaluation criteria. As part of the benchmark, we
introduce a compact variant of ImageNet, called SlimageNet64, which retains all
original 1000 classes but only contains 200 instances of each one (a total of 200K
data-points) downscaled to 64× 64 pixels. We provide baselines for the proposed
benchmarks using a number of popular few-shot and continual learning methods,
exposing previously unknown strengths and weaknesses of those algorithms. The
dataloader and dataset will be released with an open-source license.

1 Introduction

Two capabilities vital for an intelligent agent with finite memory are few-shot learning, the ability
to learn from a handful of data-points, and continual learning, the ability to sequentially learn
new tasks without forgetting previous ones. Taken individually these two areas have recently seen
dramatic improvements mainly due to the introduction of proper benchmark tasks and datasets used
to systematically compare different methods (Chen et al., 2019; Lesort et al., 2019a; Parisi et al.,
2019). For the set-to-set few-shot setting (Vinyals et al., 2016) such benchmarks include Omniglot
(Lake et al., 2015), CUB-200 (Welinder et al., 2010), Mini-ImageNet (Vinyals et al., 2016) and
Tiered-ImageNet (Ren et al., 2018b). For the single-incremental-task continual setting (Maltoni and
Lomonaco, 2019) and the multi-task continual setting (Zenke et al., 2017; Lopez-Paz and Ranzato,
2017) the benchmarks include permuted/rotated-MNIST (Zenke et al., 2017; Goodfellow et al., 2013),
CIFAR10/100 (Krizhevsky et al., 2009), and CORe50 (Lomonaco and Maltoni, 2017). However,
none of those benchmarks is particularly well suited for evaluating the hybrid setting of low-data
sequential streams.

One of the main reasons behind the scarce consideration of the liaison between the two settings is
that these problems have been often treated separately and handled by two distinct communities.
Historically the research on continual learning has focused on the problem of avoiding the loss of
previous knowledge when new tasks are presented to the learner, known as catastrophic forgetting
(McCloskey and Cohen, 1989), without paying much attention to the low-data regime. On the other
hand, the research on few-shot learning has mainly focused on achieving good generalization over
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Figure 1: High level overview of the proposed benchmark. Left block: from the left, the learner acquires
task-specific information from each set, one-by-one, without being allowed to view previous sets (memory
constraint). The learner can store knowledge in a shared memory bank and use it in a classification model. On
the rightmost side, future tasks are inaccessible to the learner. On the bottom, the same process is repeated on
the second support set. Note that the first support set is now inaccessible. Right block: once the learner has
viewed all support sets, it is given an evaluation set (target set) containing new examples of classes contained in
the support-sets, and tasked with producing predictions for those samples. The evaluation procedure has access
to the target set labels, and can establish a generalization measure for the model.

new tasks, without caring about possible future knowledge gain or loss. Scarce attention has been
given to few-shot learning in the more practical continual learning scenario.

In this paper we propose to bridge the gap between the two settings by injecting the sequential
component of continual learning into the framework of few-shot learning, calling this new paradigm
Continual Few-Shot Learning (CFSL). CFSL can be useful to the research community for a number
of reasons: (i) as a framework for studying and improving the sample efficiency of mini-batch
stochastic methods; (ii) as a minimal and efficient framework for studying and rectifying catastrophic
forgetting providing insight into better learning dynamics, or by designing general methods to rectify
the problem; (iii) as a framework for studying continual learning under memory constraints, and for
testing meta-learning systems that are capable of continual learning (our settings fits on a single GPU
with 11 GBs of memory). While we formally define the problem in Section 3, a high-level diagram is
shown in Figure 1.

Our main contributions can be summarized as follows:

1. We formalize a highly general and flexible continual few-shot learning setting, taking into
account recent considerations expressed in the literature.

2. We propose a novel benchmark12 and a compact dataset called SlimageNet643, releasing
them under an open source license.

3. We compare recent state-of-the-art methods on our benchmark, showing how continual
few-shot learning is effective in highlighting the strengths and weaknesses of those methods.

1.1 Motivation and applications

Here, we introduce the motivation behind CFSL with some practical examples. Consider typical user
interfaces such as those used in online stores. The size of data points collected from each user is rather
small (few-shot) and is generally stored in a sequential buffer or priority queue (continual). Suppose
an underlying learning model has been deployed to enhance the user experience by suggesting new
products that are likely to be of interest. This model should be able to rapidly adapt to each user (task)

1Benchmark: https://github.com/AntreasAntoniou/FewShotContinualLearning
2Data-loader: https://github.com/AntreasAntoniou/FewShotContinualLearningDataProvider
3SlimageNet64 dataset: https://zenodo.org/record/3672132
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by accessing the sequential buffer while learning on the fly. There are multiple variants to take into
account. For instance, if the user is unknown or previous data is not accessible (e.g. under privacy
policies) the model has to rapidly infer the user preferences from a single task. On the other hand, if
the user profile is known the model should retain knowledge about previous interactions without the
need of being retrained from scratch. Another example arise from human-robot interaction, where
most of the applications require a robot to learn online by interacting with human teachers. For
instance, in a manipulation task the human can provide a few trajectories representing the first task,
then the second, the third, etc. The amount of trajectories for each task is usually rather limited and the
tasks are learned sequentially. The robot should retain the knowledge of all tasks encountered so far,
possibly by avoiding expensive training procedures that would overload the on-board hardware. Note
that neither the few-shot nor the continual setting are appropriate to deal with the aforementioned
examples, since the former does not consider the sequential component and the latter does not account
for the limited data size. Our CFSL formulation instead, can handle all these examples and other
collateral variations, as discussed more thoroughly in Section 3.

2 Related Work

2.1 Few-Shot Learning

Progress in few-shot learning (FSL) was greatly accelerated after the introduction of the episodic
few-shot training (Vinyals et al., 2016). This setting, for the first time, formalized few-shot learning
as a well defined problem paving the way to the use of end-to-end differentiable algorithms that
could be trained, tested, and compared. Among the first algorithms to be proposed there were meta-
learned solutions, which here we group into three categories: metric-learning, optimization-based,
hallucination (Chen et al., 2019). Metric-learning techniques are based on the idea of parameterizing
embeddings via neural networks and then use distance metrics to match target points to support points
in latent space (Vinyals et al., 2016; Edwards and Storkey, 2017; Snell et al., 2017). Optimization-
based or gradient-based techniques are trained to perform a controlled optimization or parameter
initialization to learn efficiently from a support set and generalize to a target set (Ravi and Larochelle,
2016; Li et al., 2017; Finn et al., 2017; Antoniou et al., 2019; Rusu et al., 2019; Antoniou and Storkey,
2019). Hallucination techniques utilize one or both the aforementioned methods in combination with
a generative process to produce additional samples as a complement to the support set (Antoniou et al.,
2017). There have been a number of methods that do not clearly fall in one of the previous categories
(Santoro et al., 2017; Santurkar et al., 2018; Chen et al., 2019), including Bayesian approaches (Grant
et al., 2018; Gordon et al., 2019; Patacchiola et al., 2019). For more detail, we refer the reader to the
original work as well as a survey on few-shot learning (Chen et al., 2019).

2.2 Continual Learning

The problem of continual learning (CL), also called life-long learning, has been considered since
the beginnings of artificial intelligence and it remains an open challenge in machine learning (Parisi
et al., 2019). In standard offline supervised learning, algorithms can usually access any data point
as many times as necessary during the training phase. In contrast, in CL data arrives sequentially
and might only be ever seen once during the training process. Following the taxonomy of (Maltoni
and Lomonaco, 2019), we group the continual learning methods into three classes: architectural,
rehearsal, and regularization methods. Each category brings with it a different set of advantages and
disadvantages under various resource constraints. Architectural approaches can be constrained on
the amount of available RAM (Rusu et al., 2016; Mallya et al., 2018; Mallya and Lazebnik, 2018;
Lesort et al., 2019a). Whereas, rehearsal strategies can become quickly bounded by the amount of
available storage (Rebuffi et al., 2017; Lesort et al., 2018, 2019b). Regularization approaches can
be free from resource constraints but incur in severe issues in the way they adapt model parameters
(Kirkpatrick et al., 2017; Zenke et al., 2017; Lee, 2017; He and Jaeger, 2018; Mitchell et al., 2018).
The mentioned strategies can often be intersected and combined to form even more powerful models
(Rebuffi et al., 2017; Kemker et al., 2018; Maltoni and Lomonaco, 2019). Due to space constraints,
we refer the reader to recent surveys on continual learning (Lesort et al., 2019c; Parisi et al., 2019).
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2.3 Joining Meta-Learning and Continual Learning

Attempts to combine continual-learning with meta-learning produced a set of new research areas
(Caccia et al., 2020). Continual Few-Shot Learning falls into meta continual-learning which can
also be thought of as ‘learning to continually learn’ (Finn et al., 2019; He et al., 2019; Harrison
et al., 2019). In contrast, continual meta-learning refers to ‘continually learning to learn’ which
attempts to make the process of meta-learning continuous as opposed to the standard meta-learning
which is typically performed offline. Very recently Caccia et al. (2020) proposed a hybrid task, called
Online faSt Adaptation and Knowledge Accumulation (OSAKA), linking continual-meta learning
and meta continual-learning to study continual learning in the context of non-stationarity on shifting
task distributions and unknown identities. Related to continual few-shot learning is the field of
incremental few-shot learning (IFSL, (Gidaris and Komodakis, 2018; Ren et al., 2018a)). In contrast
to standard few-shot learning and our work, in IFSL target set is composed of ‘novel’ classes (drawn
from a never-seen-before dataset) as well as classes seen during the meta-learning phase (called
‘base classes’), and it does not consider continual updates to the novel classes. These methods are
significantly different in terms of training and testing procedures. For this reason, we will not analyze
thie line of research any further.

Inconsistencies in the evaluation protocol In the literature, there are no established benchmarks
that integrates few-shot and continual learning. Related tasks were introduced to prove the efficacy of
a given system, making such tasks very restricted in terms of what methods they are applicable on, and
how many aspects they could investigate. We found that tasks and datasets vary from paper to paper,
making it challenging to know the actual performance of a given algorithm in comparison to others.
For instance, the method proposed by Vuorio et al. (2018) has been tested exclusively on variants
of MNIST. The method of Javed and White (2019) has been tested on Omniglot and incremental
sine-waves. Spigler (2019) evaluated on MNIST, Le et al. (2019) on CIFAR100 and permuted MNIST,
and Beaulieu et al. (2020) on Omniglot. It is evident how the problem of continual few-shot learning
is not well defined, making it challenging to benchmark and compare the performance of algorithms.

3 Continual Few-Shot Learning

3.1 Definition of the problem

A continual few-shot learning (CFSL) task is composed of a sequence G of small training sets (support
sets) G = {Sn}NG

n=1, and a small evaluation set (target set) T . Each support set S = {(xn, yn)}NS
n=1

is a set of input-label pairs just like in the standard few-shot learning setup (Chen et al., 2019). A
target set T = {(xn, yn)}NT

n=1 is a set of input-label pairs containing previously unseen instances of
classes stemming from G. The objective of the learner is to perform well on the validation set T
having only temporal access to the labeled data contained in the support S .

The size of the support set NS is defined by the number of classes NC (way) and by the number
of samples per class K (shot), such that if we have a 5-way/1-shot setup we end up with NS =
NC ×K = 5× 1 = 5. The Number of Support Sets Per Task (NSS) parameter determines NG, the
cardinality of G. A Class-Change Interval (CCI) parameter dictates how often the classes within the
sequence G should change, expressed in numbers of support sets. This corresponds to assigning the
elements in the support sets to a series of disjoint class sets

⋂I
i=1 Ci = {∅}, where I = dNSS/CCIe

and Ci is a set of unique classes of size NC . For example, if CCI=2 then we will draw support sets
whose classes change every 2 samples. As a result, support sets S1 and S2 will contain different
instances of the same class set C1, whereas S3 and S4 will contain different instances from the
class set C2. The process of generating CFSL tasks is also described in Algorithm 1 (Appendix E,
supplementary material).

A learner is a process which extracts task-specific information and distills it into a classification
model. The model can be generically defined as a function f(x,θ) parameterized by a vector of
weights θ. At evaluation time the learner is tested through a loss function

L =
(
f(xT ,θ), yT

)
, (1)

where xT and yT are the input-output pairs belonging to the target set. Note that we intentionally
provided a definition that is generic enough to fit into different methodologies and not restricted to
the use of neural networks.
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To remove the possibility of converting a continual learning task to a non-continual one, we introduce
a restriction, which dictates that a support set S is sampled from G without replacement, and deleted
once it has been used by the learner. The learner should never have access to more than one support
set at a time, and should not be able to review a support set once it has moved to the next one. This
restriction induces a strict sequentiality in the access of G. The setup we have described so far is
very flexible, and it allows us to define a variety of different tasks and therefore to target different
problems. In the following section we provide a description of those tasks and show that they are
consistent with the continual learning literature.

3.2 Task Types

In this section we define an empirical procedure under the form of specific task types. Our CFSL
tasks fully cover the standard single-incremental task scenario (Lomonaco and Maltoni, 2017) while
introducing an additional, super-class NI setting consistent with Domain-Incremental learning (van de
Ven and Tolias, 2018). Specifically, task A, B, and D are equivalent to New Instances (NI), New
Classes (NC), and New Instances and Classes (NIC) (Maltoni and Lomonaco, 2019), respectively.
Task C captures the super-set NI setting where instances are sampled across super-classes, instead
of being sampled from previously defined class categories. This task is most similar to Domain-
Incremental learning (van de Ven and Tolias, 2018). A detailed comparison between our tasks and
existing work is reported in Appendix D (supplementary material). Figure 2 showcases a high-level
visual representation of the proposed tasks.

A New Samples: In this task type, each support set within a given task are sampled from the
same set of preselected classes. As a result, each support set will share the same classes
and labels but will contain previously unseen samples of those classes. To achieve this, we
can set CCI to be equal to (or higher than) the number of support sets in a given task (CCI
≥ NSS). For every support set we sample new instances from the same classes as seen in
previous support sets of the same task. Motivation: The standard supervised regime can
be considered as a particular case of this task, which can be used for studying mini-batch
stochastic optimization models as well as meta-learning efficient algorithms for doing so.

B New Classes: In this task type, each support set has different set of classes from the other
support sets within a given task (CCI = 1). Each class within each support set has a
corresponding unique output unit in the model. Motivation: Class-incremental learning
is a particular case of this task. Since this setting allows expanding the number of class
descriptors, the agent is not forced to explicitly rewrite previous knowledge at the class-level,
but it may have to rewrite representations at lower-levels.

C New Classes with Overwrite:. This task is similar to task B in that each support set has
different set of unique classes (CCI = 1). The difference is that each class in the overall task
is grouped and assigned a new label by overwriting the true label. As a result the number
of output units in the model is equivalent to the number of unique classes within a single
support set C̃. Intuitively, C̃ could be the hierarchical categories of classes in Gy = ∪NG

n=1Syn,
however, in our experiments we assign the hierarchical categories arbitrarily. Motivation:
This setting emulates situations where an agent is tasked with learning data-streams while
being limited in storing knowledge in a preset number of output labels. As a result the agent
has to learn super classes, rewriting previous knowledge at the class-level.

D New Classes with New Samples: Combines tasks A and B, where each support set contains
different instances of the same set of classes for some predefined class change interval
(1 <CCI<NSS). The CCI defines when the classes (and labels) change to a different and
disjoint set. Motivation: This setting emulates situations where an agent is tasked with
both learning new class descriptors and updating such descriptors by observing new class
instances. It sheds light on how agents can perform on a setting that mixes all previous
settings into one.

3.3 Metrics

Test Generalization Performance. A proposed model should be evaluated on at least the test sets
of Omniglot and SlimageNet, on all the tasks of interest. This is done by presenting the model with a
number of previously unseen continual tasks sampled from these test sets, and then using the target
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Figure 2: Visual representation of the four continual few-shot task types. Each row corresponds to a task with
Number of Support Sets, NSS=4, and a defined Class-Change Cnterval (CCI). Given a sequence of support sets,
Sn , the aim is to correctly classify samples in the target set, T . Colored frames correspond to the associated
support set labels.

set metrics as the task-level generalization metrics. To obtain a measure of generalization across the
whole test set the model should be evaluated on a number of previously unseen and unique tasks.
The mean and standard deviation of both accuracy and performance should be used as generalization
measures to compare models.

Multiply-Addition operations (MACs) Measures the computational expense of both the learner
and the model operations during learning and inference time. In other words, it measures the memory
footprint that the model itself needs to execute during a cycle of inference, or a meta-learning cycle.

Across Task Memory (ATM). Even though we have imposed a restriction on the access to G, the
learner is still authorized to store in a local memory bankM some representations of the inputs and/or
output vectors (often implemented as embedding vectors or inner loop parameters)

M = {(x̂, ŷ)S1 , ..., (x̂, ŷ)SNG
}, (2)

where x̂ and ŷ are representations of x and y obtained after a given learner has processed x and
y and stored some of their useful components. Most learners will be compressing a given support
set, but this is not strictly the case. The potential compression rate is not directly correlated to the
complexity of the model (e.g. number of parameters, FLOPs, etc). For instance, compression can be
achieved by removing some of the dimensions of the input, or by using a lossless data compression
algorithm, which may not require additional parameters or may have minimal impact on the execution
time. In this regard, the concept of memory bank M helps to disambiguate model complexity
from any additional memory allocated for compressed representations of inputs. We can use the
cardinality ofM, indicated as |M|, to quantify the learner efficiency. Given two learners with their
corresponding models f(x,θ1) and f(x,θ2), and assuming that the size of θ1 is equal to the size
of θ2 with L1 = L2, then the learner with smaller cardinality |M| must be preferred. In order to
compare performances across different tasks and datasets, we relate the size of the stored task-specific
representations (in bytes)Mx̂ (e.g. embedding vectors in ProtoNets, and inner loop parameters for
MAML) during task-specific information extraction to the size of vectors (in bytes) x contained in
the episode Gx = ∪NG

n=1Sxn . Recall that x̂ is a compressed version of x and therefore F < H , where
H and F are the vectors of dimensionality of x and x̂, respectively. To reduce the notation burden we
have only considered the inputs x and not the targets y, since x is significantly larger than y. Based
on these considerations we define Across-Task Memory (ATM)

ATM =
|Mx̂|
|Gx|

, (3)

whereMx̂ is the stored representation of a series of support sets and Gx is the size of the support
sets. For each utilized floating point arithmetic unit we include a computation that takes into account
the floating point precision level. For example, if both Mx̂ and Gx use the same floating point
standard then it is divided out, but if the representational form uses a lower precision than the actual
data-points then it becomes compressive. From a practical standpoint (image classification), the ATM
can be estimated relating the total number of bytes stored in the memory bank (ATM numerator)
with the total number of bytes over all the images in the episode (ATM denominator). Given the
definition above:ATM < 1 for learners with efficient memory, ATM = 0 for learners with no
memory, and ATM > 1 for learners with inefficient memory. Note that the ATM is undefined for

6














