
A Implementation details

Schedule. For each model, we used the exact configurations specified in their original papers.
For each method (apart from ProtoNets) we used five inner-loop update steps. That is, a Conv-4
architecture for ProtoNets, MAML++ Low End, EWC variants as well as init + fine tune and pretrain
+ fine tune. In all variants except ProtoNets we adapt the full network’s weights in the inner loop. In
ProtoNets no inner loop optimization is carried out. For MAML++ High End and SCA we use the
improved architecture detailed in Antoniou and Storkey (2019), where there is an image embedding
based on a densenet that is not optimized in the inner loop, with a small conv network and a single
linear layer which are optimized in the inner loop. For each continual learning task type, we ran
experiments on each dataset. Each support set contained 1 sample from 5 classes (5-way, 1-shot)
while the target sets contained 5 samples from all the classes seen in a given task. We ran experiments
using 1, 3, 5 and 10 support sets for each continual task, therefore creating tasks of increasingly
long number of sub-tasks. We ran each experiment 3 times, each time with different seeds for the
data-provider and the model initializer. All models were trained for 250 epochs, where each epoch
consisted of 500 update steps, each one done on a single continual task, using the default configuration
of the Adam learning rule, and weight-decay of 1e-5. At the end of each training epoch we validated
a given model by applying it on 600 randomly sampled continual tasks, keeping those tasks consistent
across all validation phases. Once all epochs have been completed, we built an ensemble of the top
five models across all epochs with respect to validation accuracy, and applied that on 600 random
tasks sampled from the test set, to compute the final performance metrics.

Memory Representations. We have computed the ATM for each model in Appendix C; in this
section we will state the exact way each model represents its ATM bank. ProtoNets represents its
memory as class embeddings, called prototypes which store a mean of all vectors associated with any
given class. In Init + Fine Tune, Pretrain + Fine Tune, MAML++ L and EWC variants, the ATM is
represented as the updatable set of weights in the inner loop which span the entirety of the Conv-4
architecture used for each model. Finally, for MAML++ H and SCA, the ATM is represented as a
single convolutional layer and a single linear layer, which compose the small inner loop updatable
network used by the models to adapt to new continual tasks.

Datasets. For Omniglot, we used the first 1200 classes for the training set, and we split the rest
equally to create a validation and test set. For SlimageNet64, we used 700, 100 and 200 classes
to build our training, validation and test sets respectively. The SlimageNet64 splits were chosen
such that the training set had mostly living organisms, with some additional everyday tools and
buildings, while the validation and test sets contained largely inanimate objects. This was done to
ensure sufficient domain-shift between the training and evaluation distributions. As a result this
enables a more robust generalization measure to be computed.

B Comparison between datasets

We identified four desiderata that a dataset should have in order to be appropriate for CFSL. Note that,
it is hard to define quantitative criteria. Here, we provide qualitative criteria that should be considered
as generic desiderata therefore subject to a certain degree of arbitrariness.

Table 2: Dataset comparisons. Details details: number of classes in the whole dataset (#Classes), number of
samples per class (#Samples), Resolution, Format, Size allocation of RAM for the whole dataset. Suitability:
class diversity (Diversity), enough classes (#Classes), enough samples (#Samples), proper size (Size). Omniglot
and SlimageNet64 are the best choices for the tasks on grayscale and RGB datasets, respecitively.

Dataset details Suitability (satisfies criteria)
Dataset #Classes #Samples Resolution Format Size (GB) Diversity #Classes #Samples Size
MNIST (LeCun, 1998) 10 7000 28×28 Grayscale ∼0.20 7 7 7 3
Fashion MNIST (Xiao et al., 2017) 10 7000 28×28 Grayscale ∼0.20 7 7 7 3
Omniglot (Lake et al., 2015) 1622 20 28×28 Grayscale ∼0.095 3 3 3 3
CUB-200 (Welinder et al., 2010) 200 20-39 ∼475× ∼400 RGB ∼13 7 7 7 3
Mini-ImageNet (Vinyals et al., 2016) 100 600 84×84 RGB ∼4.7 7 7 3 3
Tiered-ImageNet (Ren et al., 2018b) 608 600 84×84 RGB ∼29 3 3 3 7

CIFAR-100 (Krizhevsky et al., 2009) 100 600 32×32 RGB ∼0.68 7 7 3 3
CORe50 (Lomonaco and Maltoni, 2017) 50 ∼16.5k 128×128 RGB-D ∼30 7 7 7 7

ILSVRC2012 (Russakovsky et al., 2015) 1000 732-1300 224×224 RGB ∼800 3 3 7 7

SlimageNet64 (ours) 1000 200 64×64 RGB ∼9.1 3 3 3 3

13



1. Diversity: very high degree of diversity in terms of classes. This enforces robustness in
the learning procedure, since the model has to be able to deal with previously unseen class
semantics. Diversity enable the training, validation, and test splits to lie within different
distribution spaces, covering classes that are significantly different from one another.

2. Number of classes: high number of categories. This is to ensure that we can train models
on CFSL tasks ranging from 1 sub-task, all the way to 100s of sub-tasks. Ideally, the length
of a sub-task sequence should not be constrained by the number of classes in the dataset.

3. Number of samples per class: fair, but not overabundant, number of samples per class. A
dataset with few samples can not capture the difference in distribution within each class
(poor evaluation measure), whereas having too many samples per class increases the training
time, producing very strong learners but neutralizing the difference among them.

4. Size: should be contained. The model should be trained in reasonable time, finances
and computational resources. This requirement is crucial to allow use of the dataset by a
significant portion of the research community. Here, we define a dataset as appropriate if its
size does not exceed 16 GB, which is our reasonable estimate of the average laptop RAM.

C Memory cost

We report the memory comparison on various datasets in terms of Multiply-Accumulate Computations
(MACs) and Across Task Memory (ATM). Measuring MACs is a way to quantify the inference
cost of each method. Mesuring ATM is useful for two reasons. (i) We do not restrict an agent to a
specific amount of memory, therefore it could easily store all support sets into its memory bank. ATM
distinguish models in terms of memory efficiency. (ii) Default measures of computational capacity
such (e.g. MACs) are not enough, since they quantify the overall computational requirements and
not the actual memory shared across the learning process. This might be minuscule when compared
to the model architecture functions which are usually orders of magnitude more expensive. ATM
quantifies the efficiency of the learner at compressing incoming data.

Figure 4: ATM (Across-Task Memory) and MAC (Multiply-Accumulate Computations) costs for a variety
of NSS (Number of Support Sets Per Task). ProtoNets are the superior method across the board. In terms of
ATM it is worth noting that methods such as MAML++ H and SCA tend to become incrementally cheaper than
MAML++ L as the number of support sets increases. Whereas in terms of MACs MAML++ H and SCA are the
most expensive by an order of magnitude or more compared to MAML++ L and ProtoNets.

D Proposed tasks and previous work

We show that our tasks are consistent with the previous work in continual learning (Lomonaco
and Maltoni, 2017; van de Ven and Tolias, 2018; Lesort et al., 2019c). Continual learning has

14



three different scenarios (Lesort et al., 2019c): Single-Incremental-Task (SIT), Multi-Task (MT),
Multi Incremental-Task (MIT). The continual learning settings for object recognition fall within
the Single-Incremental-Task scenario and can be further partitioned into three update content types
(Maltoni and Lomonaco, 2019): New Instances (NI), New Classes (NC), New Instances and New
Classes (NIC). In parallel work, van de Ven and Tolias (2018) proposes Non-, Class-, Domain-, and
Task- Incremental-Learning (IL) for general continual learning scenarios. This categorization also
appears in later work (Hsu et al., 2018; Zeno et al., 2018). We argue that our proposed New-Samples
task (A) is most consistent with New Instances (Maltoni and Lomonaco, 2019) but is also similar to
Non-IL in (van de Ven and Tolias, 2018) since the distribution of images sampled between support
sets does not change between time steps. New-Classes without Overwrite (task B) is most consistent
with New-Classes (Maltoni and Lomonaco, 2019) and Class-IL (van de Ven and Tolias, 2018). New-
Classes with Overwrite (task C) is not defined in (Maltoni and Lomonaco, 2019) directly but could
be seen as a generalization of New Instances where each temporal batch of data (in our case, support
sets) is generated from super-classes as opposed to class with a static distribution. New-Classes with
Overwrite (task C) is most similar to Domain-IL (van de Ven and Tolias, 2018) where the ‘head’
dimension (the set of output labels) is kept the same between consecutive batches of data. Finally,
our New-Classes with New-Samples task (D) is most similar to New-Classes and Samples (Maltoni
and Lomonaco, 2019). This task does not have an equivalent task in (van de Ven and Tolias, 2018).
Table 3 shows a disambiguation summary of the continual learning scenarios.

Table 3: Continual Learning task scenarios disambiguation.
van de Ven and Tolias (2018) Maltoni and Lomonaco (2019)

Task Class-IL Domain-IL Task-IL SIT-NI SIT-NC SIT-NIC
NS (A) 3

NC w/o O (B) 3 3
NC w/ O (C) 3
NCwNS (D) 3

E Pseudocode

Algorithm 1: Sampling a Continual Few-Shot Task
Data: Given labeled dataset D, number of support sets per task NSS, number of classes per

support set NC , number of samples per support set class KS , number of samples per class
for target set KT , class change interval CCI , and class overwrite parameter O

a = 1,b = 1;
for a ≤ (NSS/CCI) do

Sample and remove NC classes from D;
for b ≤ CCI do

n← a× CCI + b
Sample KS +KT samples for each of NC classes
Build support Sn with KS samples per class;
Build target Tn with KT samples per class;
if O = TRUE then

Assign labels {1, . . . , NC} to the classes;
else

Assign labels {1 + (a− 1)×NC , . . . , NC × a} to the classes;
end
Store sets Sn and Tn;

end
end
Combine all target sets T =

⋃NG

n=1 Tn
Return (S1...NG

, T );

15


