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1 Test on SlimageNet64

We also make some preliminary attempts on SlimageNet64 [1], a novel and difficult benchmark
for few-shot continual learning. We make the embeddings using DeepCluster [2] and we report the
obtained results in Table 1. We find that our update method based on meta-example overcomes the
baselines on both supervised and unsupervised approaches. MEML with 1600 clusters reaches better
performances then the 800 clusters cases, meaning that a more refined partition of the embedding
space is more beneficial then a rigid partitioning into classes.

Table 1: Meta-test test results on SlimageNet64 dataset.

Algorithm/Classes 5 10 20 30 40 50

Oracle OML 24.0 ±2.5. 14.3 ±3.1 15.9 ±8.3 5.0 ±1.1 9.4 ±1.6 2.0 ±0.4
Oracle MEML 31.2 ±1.6 23.8 ±1.7 25.3 ±2.9 5.5 ±1.4 7.2 ±1.3 5.7 ±0.3
OML 22.4 ±1.9 16.1 ±1.9 23.3 ±5.0 3.8 ±0.6 8.9 ±0.0 2.1 ±1.2
MEML 800 22.4 ±3.2 13.9 ±0.0 25.8 ±0.0 4.7 ±0.3 9.0 ±0.1 2.2 ±0.4
MEML 1600 27.2 ±1.6 16.1 ±1.1 26.4 ±0.6 4.2 ±0.6 8.1 ±1.0 2.3 ±0.7

2 Out-of-Distribution Tasks

Since our model is unsupervised, FEN training is only based on feature embeddings, with no class-
dependent bias. This way, our model could be general enough for OoD tasks, where the training
tasks belong to a different data distribution (i.e. a different dataset) with respect to the test tasks. To
investigate this conjecture, we test our model on the Cifar100 and Cub datasets. Results in Table 2
show that, by training on Mini-ImageNet and testing on Cifar100 (top half) or training on Omniglot
and testing on Cub (bottom half), the unsupervised approach generally outperforms the supervised
one. In the latter case, MEML also outperforms the supervised oracle trained on Cub, which is
incapable of learning a meaningful representation in our particular setting.

∗Equal contribution.
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Table 3: Meta-test test results on Omniglot dataset with rehearsal only during meta-test and both at
meta-train and meta-test.

Algorithm/Classes 10 50 75 100 150 200

OML RS only test 67.9 55.1 46.2 37.0 29.6 25.6
OML RS both train/test 75.9 56.8 51.2 39.7 30.5 25.0
MEML RS only test 81.6 56.4 54.0 44.6 34.1 27.4
MEML RS both train/test 74.7 47.0 48.4 38.3 28.9 24.2

Table 2: Meta-test test results with Out-of-Distribution tasks on Cifar100 and Cub datasets.

Cifar100/Classes 2 4 6 8 10

Oracle OML Cifar100 66.0 45.0 34.0 30.0 29.5
Oracle MEML Mini-ImageNet 58.0 33.0 35.3 25.7 24.9
MEML Mini-ImageNet 66.0 35.0 28.7 34.3 22.2
Cub/Classes 2 10 20 30 40
Oracle OML Cub 50.0 13.9 25.8 4.5 8.9
Oracle MEML Omniglot 44.0 49.1 32.7 27.0 25.1
MEML Omniglot 66.0 53.3 28.3 26.2 25.6

3 Rehearsal at Meta-Train Time

Rehearsal strategy can be useful at meta-test time. In particular, when the CLN is adapted to new
tasks in an incremental fashion, its weights can be overridden favoring the last tasks at the expense of
the first ones. The beneficial effect of rehearsal at meta-test time can be noticed when the number
of test tasks is high. In fact, reservoir sampling is generally helpful on Omniglot, that is tested on
200 classes, while it does not give the same benefit on Mini-ImageNet, where it reaches similar or
a little lower performance. We want to verify if rehearsal can be beneficial also at meta-train time,
replacing the query set Squery with a coreset built with reservoir sampling Scoreset. This way, instead
of sampling from random clusters, a buffer of previously seen data is stored in a buffer of fixed
dimension. We try three different memory size 200, 500, 1000, obtaining, as expected, increasing
results as the size increases. In Table 3 we report accuracy results on Omniglot adding rehearsal only
at meta test time, and adding it at both meta-train and meta-test time with OML and MEML. We
report only the results obtained with a buffer size 500 to avoid redundancies. As it can be noted, with
OML, using a coreset instead of a query set at meta-train time increase the performance with respect
to the case of query set usage, meaning that the representation suffers from catastrophic forgetting
and the use of random data (acting only for generality purposes and not contrasting forgetting) are
not enough to learn a good representation. On the contrary, with MEML, the use of a rehearsal
strategy at meta-train time get worse performance. We hypothesize that this behavior is due to the
different number of inner loop update between the two models. In fact, OML, making several inner
loop updates on data belonging to the same cluster, brings the CLN weights nearest the current
cluster, suffering the effect of forgetting more then MEML that makes a single inner loop on the
meta-example. These results prove that, at meta-train time, MEML needs only the generalization
ability given by Squery, while OML needs also the remembering ability given by Scoreset.

4 Details on Balancing Techniques

To verify the effect of unbalanced tasks during meta-training, we apply two techniques to balance
tasks, one at data-level, data augmentation and the other at model-level, loss balancing. We briefly
explain how these methods are implemented.

2



4.1 Data Augmentation

We apply data augmentation on the Omniglot dataset to observe if balancing the clusters could lead to
superior performance. We notice that the results reached applying data augmentation are comparable
with the one obtained with unbalanced tasks. Practically, we sample 20 elements from the clusters
bigger than 20, while we exploit augmentation on the cluster with less than 20 elements. Till reaching
20 samples for tasks, we pick each time a random image between the ones in the cluster employing a
random combination of various augmentation techniques, such as horizontal flip, vertical flip, affine
transformations, random crop, and color jitter. In detail, about the random crop, we select a random
portion included between 75%, 80%, 85%, or 90% of the entire image. Regarding the color jitter, we
use brightness, contrast, saturation, and hue factor (the first three denote a factor including between
0.8 and 1.2, the hue instead one including between −0.02 and 0.02) to adjust the image.

4.2 Loss Balancing

Our model applies clustering on all training data before starting to learn the meta-representation. This
way, we can find the maximum Cmax and minimum number Cmin of elements per cluster obtained
by k-means algorithm. Then, for each cluster, we find its number of elements Ccurrent and compute
the balanced vector Γ as follow.

Γ =
Cmax − Cmin

Ccurrent − Cmin + ε
, (1)

where ε is used to avoid division by zero. Finally Γ is normalized as follow.

Γnorm =
Γ− Γmin

Γmax − Γmin
. (2)

For each sampled task (taskId), the corresponding balancing parameter is selected and multiplied by
the cross-entropy loss CE during meta-optimization as reported in below.

L = Γnorm[taskId] · CE(logits, Y ), (3)
where logits indicate the output of the model.

5 Comparison with SeLa Embeddings

We try a recent embedding learning method based on self-labeling, SeLa [3], that forces a balanced
separation between clusters. In Table 4, we report the results obtained training our model with SeLa
embeddings on Mini-ImageNet. The main idea, taking up what was done in DeepCluster [2], is to
join clustering and representation learning, combining cross-entropy minimization with a clustering
algorithm like K-means. This approach could lead to degenerate solutions such as all data points
mapped to the same cluster. The authors of SeLa tried to solve this issue by adding the constraint
that the labels must induce equipartition of the data, which they observe maximizes the information
between data indices and labels. This new criterion extends standard cross-entropy minimization
to an optimal transport problem, which is harder to optimize, exploiting traditional algorithms that
scale badly when facing larger datasets. To solve this problem a fast version of the Sinkhorn-Knoop
algorithm is applied.

In detail, given a dataset of N data points I1, . . . , IN with corresponding labels y1, . . . ,yN ∈
{1, . . . ,K}, drawn from a space of K possible labels, and a deep neural network x = Φ(I) mapping
I to feature vectors x ∈ RD; the learning objective is defined as:

min
p,q

E(p, q)

subject to ∀y :q(y|xi) ∈ {0, 1} and
N∑
i=1

q(y|xi) =
N

K
.

(4)

E(p, q) is defined as the average cross-entropy loss, while the constraints mean that the N data
points are split uniformly among the K classes and that each xi is assigned to exactly one label.
The objective in Equation (4) is solved as an instance of the optimal transport problem, for further
details refer to the paper. DeepCluster adopts particular implementation choices to avoid degenerate
solutions, but contrary to SeLa it does not force the clusters to contain the same number of samples.
We empirically observe that in our setting an unconstrained approach leads to better results.
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Table 4: Meta-test test results on Mini-ImageNet dataset with Sela embedding.

Algorithm/Classes 2 4 6 8 10

OML 50.0 25.0 18.0 31.3 15.0
MEML 64 50.0 35.0 17.3 31.3 17.0
MEML 256 64.0 31.0 17.3 32.5 18.3

Table 5: Training time and GPU usage of MEML vs. OML on Omniglot and Mini-ImageNet.

Model Dataset Training time GPU usage
OML Omniglot 1h 32m 2.239 Gb
MEML Omniglot 47m 0.743 Gb
OML Mini-ImageNet 7h 44m 3.111 Gb
MEML Mini-ImageNet 3h 58m 1.147 Gb

Table 6: Features comparison between our MEML and several works recently proposed in the
literature involving continual learning and few-shot learning into the wild.

Few-shot Unsupervised Continual Imbalance OoD Algorithm
7 7 X 7 7 iCARL [4]
7 X X 7 7 CURL [5]
X X 7 7 7 CACTUs [6]
X X 7 7 7 UMTRA [7]
X X 7 7 7 UFLST [8]
X 7 7 X X L2B [9]
7 X X 7 X GD [10]
X 7 X 7 7 OML [11]
X 7 X 7 7 ANML [12]
X 7 X 7 X Continual-MAML [13]
X 7 X 7 7 iTAML [14]
X X X X X MEML (Ours)

6 Time and Computational Analysis

In Table 5, we compare training time and computational resources usage between OML and MEML
on Omniglot and Mini-ImageNet. Both datasets confirm that MEML, adopting a single inner update,
trains considerably faster and uses approximately one-third of the GPU resources with respect to
OML. This latter performs an update for each sample included in Scluster, keeping a computational
graph of the model in memory for each update. This leads to slower training time, especially when
the required number of epochs is high, such as for Mini-ImageNet. Even though with this kind of
datasets we do not require particular GPU resources, this test shows the strength of our model in an
eventually future scenario exploiting large image, deeper network, and more cluster samples.

7 Learning in the Jungle

To the best of our knowledge, a few-shot unsupervised continual learning setting has never been
studied before in the literature. However, some works propose “learning in the jungle" problems,
that involve a mixture of non-trivial settings. In Table 6 we compare some novel methods to our
OML, highlighting the features of each one. Our model is the only one that presents such complex
setting involving few-shot learning, continual learning, unlabelled and unbalanced tasks and proposes
experiments that show the model ability to learn from OoD data. Note that this analysis is not
intended to be a complete analysis of all the methods of continual learning and few-shot learning, but
only of those methods that have been placed in a different setting from the one that is commonly used
in these two fields or that are related to them.
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Table 7: Meta-test test results on Omniglot dataset with FiLM layers applied on Oracle OML.

Algorithm/Classes 10 50 75 100 150 200

Oracle OML 88.4 74.0 69.8 57.4 51.6 47.9
OML FiLM 91.1 79.5 80.6 68.6 64.0 52.7

Table 8: Meta-test test results on Cifar100 dataset with FiLM layers applied on Oracle OML trained
on Omniglot.

Cifar100/Classes 2 4 6 8 10

OML Omniglot 50.0 25.0 15.3 22.8 9.4
OML FiLM Omniglot 50.0 25.0 16.7 31.3 13.9

8 FiLM Layers for OoD Tasks

To further improve the results testing on OoD tasks, we introduce FiLM [15] layers within the OML
architecture (the supervised baseline). In a FiLMed neural network some conditional input is used to
conditioned FiLM layers, to influence the final prediction by this input. The FiLM generator map
this information into FiLM parameters, applying feature-wise affine transformation (in particular
scaling and shifting) element-wise (features map-wise for CNN). If x is the input of a FiLM layer, z a
conditional input, and γ and β are z-dependent scaling and shifting vectors, the FiLM transformation
is reported below.

FiLM = γ(z)x� β(z) (5)

We apply this concept to OML, conditioning the prediction to task-specific features. We add two
FiLM layers as linear layers after each of the last two convolutional layers of the FEN. These layers
have adaptable parameters, updating in both the inner and the outer loop. In detail, recovering what
was already done in [16], we introduce a 100-dimensional context parameter vector producing,
through the linear layer, 512 filters. These filters are used to apply an affine transformation on the
output of the convolutional layer. Context parameters are reset to zero before each new task, while
FiLMs are trained to be general for all tasks and never reset during meta-train.

At meta-test time, we update the FiLM layers (during the meta-test train phase) and we reset the
context parameters after each new task. This way, the context parameters are specific and dependent
on each task while the FiLM layers can adapt themselves to the new unseen classes, in order to shift
the frozen representation according to the context. This way, if a task changes, the model could be
able to shift the representation reaching better generalization capabilities. The advantage is more
pronounced facing with OoD tasks since their distribution is much different with respect to the
meta-train one. We report some preliminary results obtained applying FiLM layers on the OML [11]
model, trained on Omniglot and tested on both Omniglot (see Table 7) and Cifar100 (see Table 8).
We find that OML with FiLM layers outperforms or at least equals on both dataset.

The results are promising, but we believe that much better performance could be achieved training
context parameters and FiLM layers separately or introducing some tricks to train them together.

9 The Effect of Self-Attention

Here we want to empirically view how our self-attention mechanism acts on cluster images. We report
some examples of clusters and the respectively self-attention coefficients that MEML associates
to each image. In Figure 1 some samples obtained during MEML training are reported, on Mini-
ImageNet and Omniglot respectively. The darker colors indicate the values of the highest attention
coefficient, while the lighter colors indicate the lower ones. In the majority of cases, our mechanism
rewards the most representative examples of the cluster, meaning the ones that globally contain most
of the features present in the other examples as well. A further improvement could be to identify the
outliers (the samples more distant from the others at features-level) of a cluster and discard them
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0.51 0.01 0.13 0.13 0.03 0.04 0.07 0.06

0.02 0.19 0.04 0.05 0.39 0.03 0.27 0.01

0.14 0.01 0.52 0.06 0.02 0.03 0.12 0.10

0.12 0.66 0.15 0.07

0.14 0.26 0.09 0.05 0.18 0.08 0.20

0.40 0.08 0.36 0.07 0.09

0.16 0.13 0.08 0.15 0.09 0.10 0.15 0.14

0.17 0.19 0.16 0.14 0.08 0.24

Figure 1: Samples of clusters (one for each row) generated on Omniglot (left) and Mini-ImageNet
(right). Self-attention coefficients are reported associated to each image.

before the self-attention mechanism is applied. This way, only the features of the correctly grouped
samples can be employed to build the meta-example.

10 Datasets

To evaluate our model, we employ two standard datasets typically used to validate few-shot learning
methods: Omniglot and Mini-ImageNet. In addition, we try our model on a new and challenging few-
shot continual learning benchmark, SlimageNet64. The Omniglot dataset contains 1623 characters
from 50 different alphabets with 20 greyscale image samples per class. We use the same splits as [6],
using 1100 characters for meta-training, 100 for meta-validation, and 423 for meta-testing. The
Mini-ImageNet dataset consists of 100 classes of realistic RGB images with 600 examples per class.
As done in [17, 6], we use 64 classes for meta-training, 16 for meta-validation and 20 for meta-test.
The SlimageNet64 dataset contains 1000 classes with 200 RGB images per class taken from the
down-scaled version of ILSVRC-2012, ImageNet64x64. 800 classes are used for meta-train and the
remaining 200 for meta-test purposes. Finally, we use the Cifar100 [18] and Cub [19] datasets to
prove our model performance on Out-of-Distribution tasks.

11 Implementation Details

The FEN is composed of 6 convolutional layers followed by ReLU activations, 3 × 3 kernel (for
Omniglot, the last one is a 1× 1 kernel) followed by 2 linear layers interleaved by a ReLU activation.
The attention mechanism is implemented with two additional linear layers interleaved by a Tanh
function and followed by a Softmax and a sum to compute attention coefficients and aggregate features.
For Omniglot, we train the model for 40000 steps while for Mini-ImageNet and SlimageNet64 for
200000, with meta-batch size equals to 1. The outer loop learning rate is set to 1e−4 while the
inner loop learning rate is set to 0.01, with Adam optimizer. We report the algorithm of MEML
meta-training in Algorithm 1 and an illustration of the four phases in Figure 2.
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Algorithm 1 MEML algorithm on FUSION setting

Require: : D = X0, X1, ..., XN : unlabeled training set
Require: α, β: inner loop and outer loop learning rates

1: Run embedding learning on D producing Z0:N from X0:N

2: Run k-means on Z0:N generating a distribution of unbalanced tasks p(T ) from clusters
3: Randomly initialize θ and W
4: while not done do
5: Sample a task Ti ∼ p(T ) = (Scluster,Squery)
6: Randomly initialize Wi

7: Scluster = {(Xk, Yk)}Kk=0, with Y0 = ... = YK
8: Squery = {(Xq, Yq)}Qq=0

9: R0:K = fθ(X0:K)
10: α0:K = Softmax[fρ(R0:K)]

11: ME =

K∑
k=0

[Rk · αk]

12: ψ, φ = {Wi, ρ}, {θ,Wi, ρ}
13: ψ ← ψ − α∇ψ`i(fψ(ME), Y0)
14: φ← φ− β∇φ`i(fφ(X0:Q), Y0:Q)
15: end while

1. Embedding Learning 3. Meta-Continual train
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Figure 2: Scheme of FUSION. The model is composed of 4 phases: embedding learning network
phase, unsupervised task construction phase, meta-continual training phase and meta-continual test
phase.
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