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Abstract

Deep Neural Networks have shown great promise on a variety of downstream
applications; but their ability to adapt and generalize to new data and tasks remains
a challenging problem. However, the ability to perform few-shot adaptation to
novel tasks is important for the scalability and deployment of machine learning
models. It is therefore crucial to understand what makes for good, transferable
features in deep networks that best allow for such adaptation. In this paper, we
provide strong experimental evidence that features that are most transferable have
high uniformity in the embedding space and propose a uniformity regularization
scheme that encourages better transfer and feature reuse for few-shot learning. We
evaluate our regularization on few-shot Meta-Learning benchmarks and show that
uniformity regularization consistently offers benefits over baseline methods while
also being able to achieve state-of-the-art on the Meta-Dataset.

1 Introduction

Deep Neural Networks have enabled great success in various machine learning domains such as
computer vision [14, 16, 31], natural language processing [55, 9, 4], decision making [43, 44, 12] or
in medical applications [38, 17]. This can be attributed to the ability of networks to extract abstract
features from data, which, given sufficient data, can effectively generalize to held-out test sets.

However, the degree of generalization scales with the semantic difference between test and training
tasks, caused e.g. by domain or distributional shifts between training and test data. Understanding
how to achieve generalization under such shifts is an active area of research in few-shot Meta-
Learning [47, 11, 6], where a meta-learner is tasked to quickly adapt to novel test data given its
training experience and a limited labeled data budget. There exists a large corpus of meta-training
methods that propose how to extract features from the training data. However, in this paper, we
seek to investigate what fundamental properties learned features and feature spaces should have to
facilitate adaptation in Meta-Learning.

Fortunately, recent literature provides pointers towards one such property: the notion of “feature
uniformity” for improved generalization. For Unsupervised Representation Learning, [57] highlight
a link between the uniform arrangement of hyperspherical feature representations and the transfer
performance in downstream tasks, which has been implicitly adapted in the design of modern con-
trastive learning methods [1, 49, 50]. Similarly, [40] show that for Deep Metric Learning, uniformity
in hyperspherical embedding space coverage as well as uniform singular value distribution embed-
ding spaces are strongly connected to zero-shot generalization performance. Both [57] and [40]
link the uniformity in the final representation space to the preservation of maximal information and
reduced overfitting. This suggests that actively imposing a uniformity prior on learned feature rep-
resentations encourages better transfer properties by retaining more information and reducing bias
towards training tasks, and as such facilitate better adaptation to novel tasks.
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However, while both [57] and [40] propose methods to incorporate this notion of uniformity1,
they are defined only for hyperspherical embedding spaces or contrastive learning approaches, thus
severely limiting the applicability to other domains.

To address these limitations and leverage the benefits of uniformity for generic deep neural net-
work meta-learning, we propose uniformity regularization, which places a uniform hypercube prior
on the learned features space during training, without being limited to the contrastive training ap-
proaches or a hyperspherical representation space. Unlike e.g. a multivariate Gaussian, the uniform
prior puts equal likelihood over the feature space, which then enables the network to make fewer
assumptions about the data, limiting model overfitting to the training task. This incentivizes the
model to learn more task-agnostic and reusable features, which in turn improve generalization [35].
Our uniformity regularization follows an adversarial learning framework that allows us to apply our
proposed uniformity prior, as a uniform distribution does not have a closed-form divergence min-
imization scheme. Using this setup, we experimentally demonstrate that uniformity regularization
aids test-time adaptation to novel tasks in few-shot Meta-Learning. We find that it consistently im-
proves performance of baseline methods on four benchmarks, while also being able to set a new
state-of-the-art in Meta-Learning on the Meta-Dataset [53].

Overall, our contributions can be summarized as:

• We propose to perform uniformity regularization in the embedding spaces of a deep neural
network, using a GAN-like alternating optimization scheme, to increase the transferability
of learned features and the ability for better adaptation to novel tasks and data.

• Using our proposed regularization, we achieve strong improvements over baseline methods
in Meta-Learning. Furthermore, uniformity regularization allows us to set a new state-of-
the-art on the Meta-Dataset [53].

2 Background

2.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs, [15]) were proposed as a generative model which utilizes
an alternative optimization scheme that solves a minimax two-player game between a generator, G,
and a discriminator, D. The generator G(z) is trained to map samples from a prior z ∼ p(z) to the
target space, while the discriminator is trained to be an arbiter between the target data distribution
p(x) and the generator distribution. The generator is trained to trick the discriminator into predicting
that samples from G(z) actually stem from the target distribution. While many different GAN
objectives have been proposed, the standard “Non-Saturating Cost” defines the generator objective

LG = min
G

Ez∼p(z)[1− logD(G(z))] (1)

with discriminator objective

LD = max
D

Ez∼p(z)[1− logD(G(z))] + Ex∼p(x)[logD(x)] (2)

and p(z) the generator prior and p(x) a defined target distribution (e.g. natural images).

2.2 Fast Adaptation and Generalization in Meta-Learning

Throughout this work, we use the notion of “fast adaptation” to novel tasks to measure the transfer-
ability of learned features, and as such the generalization and adaptation capacities of a model. This
term has recently been popularized by different meta-learning strategies, and refers to the ability to
make predictions on query samples given only few support samples - this can be e.g. of optimiza-
tional nature (s.a. MAML [11]) or metric-based (s.a. Prototypical Networks [47]). These methods
assume distinct meta-training and meta-testing task distributions, where the goal of a meta-learner

1By means of imposing a Gaussian potential over hyperspherical embedding distances or pairwise sample
relation schemes.
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is to adapt fast to a novel task given limited samples for learning it.
Specifically, a few-shot meta-learner is evaluated to perform n-way classification given k ‘shots’,
corresponding to k examples taken from n previously unseen classes. Generally, one distinguishes
two types of meta-learners: ones requiring m training iterations for finetuning [11, 36], and ones
that do not [47, 29]. In the meta-learning phase, the meta-learner is trained to solve entire tasks as
(meta-training) datapoints. Its generalization is measured by how well it can quickly adapt to novel
test tasks.
Many different strategies have been introduced to maximize the effectiveness of the meta-learning
phase such as episodic training, where the model is trained by simulating ‘test-like’ conditions [56],
or finetuning, where the model performs up to m gradient steps on the new task [11].

3 Extending Meta-Training with Uniformity Priors

In this section, we introduce the proposed uniformity regularization and detail the employed alter-
nating GAN-like optimization scheme to perform it in a computationally tractable manner.

3.1 Prior Matching

Given a neural network q(y|x) that is parameterized by θ we formally define the training objective
as LT (q(y|x), y) where LT is any task-specific loss such as a cross-entropy loss, (x, y) are samples
from the training distribution Dtrain and q(y|x) the probability of predicting label y under q. This is
a simplified formulation; in practice, there are many different ways to train a neural network, such
as ranking-based training with tuples [7]. We define the embedding space z as the output of the final
convolutional layer of a deep network. Accordingly, we’ll note q(z|x) as the conditional distribution
for that embedding space which, due to the convnet being a deterministic mapping, is a dirac delta
distribution at the value of the final convolutional layer. Section 4.1 further details how to apply
uniformity regularization in practice.

As we ultimately seek to impose a uniformity prior over the learned aggregate feature/embedding
“posterior” q(z) =

∫
x
q(z|x)p(x)dx, we begin by augmenting the generic task-objective to allow

for the placement of a prior r(z). For priors r(z) with closed-form KL-divergences D, one can
define a prior-regularized task objective as

L = min
θ

E(x,y)∼Dtrain [LT (q(y|x), y)] +Dx∼Dtrain (q(z|x)‖r(z)) (3)

similar to the Variational Autoencoder formulation in [24]. As we aim to improve the generalization
of a network by encouraging uniformity in the learned embeddings, we require regularization by
matching the learned embedding space to a uniform distribution prior U(−α, β), defined by the
lower and upper bounds α and β, respectively. Unfortunately, such a regularization does not have
a simple solution in practice, as a bounded uniform distribution has no closed-form KL divergence
metric to minimize.

3.2 Uniformity Regularization

To address the practical limitation of solving Eqn. 3, we draw upon the GAN literature, in which
alternate adversarial optimization has been successfully used to match a generated distribution to
a defined target distribution using implicit divergence minimization. Latent variable models such
as the Adversarial Autoencoder [32] have successfully used such a GAN-style adversarial loss,
instead of a KL divergence, in the latent space of the autoencoder to learn a rich posterior. Such
implicit divergence minimization allows us to match any well-defined distribution as a prior, but
more specifically, ensures that we can successfully match learned embedding spaces to U(−α, α),
which we set to the unit hypercube U(−1, 1) by default.

To this end, we adapt the GAN objective in Eqn. 2 and 1 for uniformity regularization optimization
and train a discriminator,D, to be an arbiter between which samples are from the learned distribution
q(z|x) and from the uniform prior r(z).
As such, the task model q (parameterized by θ) aims to fool the discriminator D into thinking
that learned features, q(z|x), come from the chosen uniform target distribution, r(z), while the
discriminator D learns to distinguish between learned features and samples taken from the prior,
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z̃ ∼ r(z). Note that while the task-model defines a deterministic mapping for q(z|x) instead of a
stochastic one, the aggregate feature “posterior”

∫
x
q(z|x)p(x)dx, on which we apply our uniformity

prior, is indeed a stochastic distribution [32].

Concretely for our uniformity regularization, we rewrite the discriminator objective from Eqn. 2 to
account for the uniform prior matching, giving

LD = max
D

Ex∼Dtrain [log(1−D(q(z|x)))] + Ez̃∼U(−1,1)[logD(z̃)] (4)

Consequently, we reformulate the generator objective from Eqn. 1 to reflect the task-model q,

Lmax = min
θ

Ex∼Dtrain [log(1−D(q(z|x)))] (5)

where we used the notation Lmax to reflect that optimization maximizes the feature uniformity by
learning to fool D. Our final, uniformity regularized objective for θ is then given as

L = min
θ

max
D

E(x,y)∼Dtrain [LT (qθ(y|x), y)]+γEx∼Dtrain [log(1−D(qθ(z|x)))]+Ez̃∼U(−1,1)[logD(z̃)]

(6)

with task-objective LT and training data distribution Dtrain. Using this objective, the learned feature
space is implicitly encouraged to become more uniform. The amount of regularization is controlled
by the hyperparameter γ, balancing generalization of the model to new tasks and performance on the
training task at hand. Large γ values hinder effective feature learning from training data, while val-
ues of γ too small result in weak regularization, leading to a non-uniform learned feature distribution
with reduced generalization capabilities.

4 Experiments

We now study how uniformity regularization can facilitate generalizability of learned features and
the ability of a model to perform fast adaptation to novel tasks and data in Meta-Learning. We
divide this study into two experiments. First, we measure the improvements over distinct baseline
methods on four Meta-Learning benchmarks in §4.2: Omniglot [27], Double MNIST [28], CIFAR-
FS [26] and MiniImageNet [56]. To study more realistic applications, we then evaluate the benefits
of uniformity regularization on the diverse, large-scale Meta-Dataset [53] in §4.3.

For all experiments, we do not perform hyperparameter tuning on the base algorithms, and use the
same hyperparameters that the respective original papers proposed; we simply add the uniformity
regularization, along with the task loss as in Eqn. 6.

4.1 Experimental Details

Uniformity regularization was added to the output of the CNNs for all networks. Specifically,
the regularization is applied directly on the learned metric space for the metric-space based meta-
learners [56, 47, 30], and applied to the output of the penultimate layer for MAML [11]. The
discriminator is parameterized using a three-layer MLP with 100 hidden units in each layer and
trained using the Adam optimizer [23] with a learning rate of 10−5. The value of γ is chosen to be
0.1 for all experiments, which we found to work reliably across datasets.

4.2 Uniform Priors improve Baseline Methods

We first examine the impact of uniformity regularization on three distinct meta-learning baselines:
Matching Networks [56], Prototypical Networks [47] and MAML [11]. Performance is evaluated on
four few-shot learning benchmarks: Double MNIST [28], Omniglot [27], CIFAR-FS [26] and Mini-
Imagenet [56]. For our implementation, we utilize TorchMeta [8]. Results for each meta-learning
method with and without regularization are summarized in Table 12. For Prototypical Networks

2For Double MNIST and Omniglot, error rates are listed instead of accuracies.
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Table 1: Uniform Priors for Meta-Learning baselines. Comparison of several meta-learning algorithms on
four few-shot learning benchmarks: Omniglot [27], Double MNIST [28], CIFAR-FS [26] and Mini-Imagenet
[56]. We test with multiple regularization techniques such as Dropout, L2 regularization and compare directly
against uniformity-alignment (U-A) as proposed by [57]. The models are evaluated with and without uniformity
regularization (UR) and we report the mean error rate over 5 seeds. No hyperparameter tuning is performed
on the meta-learner and we use the exact hyperparameters as proposed in the original paper.

1) Baseline Study Omniglot Double MNIST CIFAR-FS MiniImageNet

Methods ↓ (5, 1) (5,5) (5, 1) (5,5) (5, 1) (5,5) (5, 1) (5,5)

MAML 4.8± 0.4 1.5 ± 0.4 7.9± 0.7 1.9± 0.3 52.1 ± 0.8 67.1 ± 0.9 47.2 ± 0.7 62.1 ± 1.0
MAML + UR 4.1± 0.5 1.3± 0.2 7.3 ± 0.2 1.5 ± 0.5 52.9 ± 0.4 67.1 ± 0.9 48.9 ± 0.8 64.1 ± 1.0

Matching Networks 2.1 ± 0.2 1.0 ± 0.2 4.2 ± 0.2 2.7 ± 0.2 46.7 ± 1.1 62.9 ± 1.0 43.2 ± 0.3 50.3 ± 0.9
Matching Networks + Dropout 2.4 ± 0.2 1.3 ± 0.2 4.4 ± 0.2 2.9 ± 0.4 45.3 ± 1.1 63.0 ± 0.7 42.9 ± 0.9 50.0 ± 1.0
Matching Networks + L2 reg. 2.1 ± 0.2 1.0 ± 0.1 4.1 ± 0.2 2.6 ± 0.2 46.9 ± 1.1 63.0 ± 0.9 43.3 ± 0.8 50.1 ± 1.0
Matching Networks + U-A 2.0 ± 0.1 0.9 ± 0.1 3.9 ± 0.3 2.7 ± 0.1 47.3 ± 1.0 63.1 ± 0.8 43.5 ± 0.7 50.3 ± 1.0
Matching Networks + UR 1.7± 0.1 0.9± 0.1 3.2± 0.1 2.3± 0.3 49.3 ± 0.4 63.1 ± 0.7 47.1 ± 0.8 53.1 ± 0.7

Prototypical Network 1.6 ± 0.2 0.4 ± 0.1 1.3 ± 0.2 0.2 ± 0.2 52.4 ± 0.7 67.1 ± 0.5 45.4 ± 0.6 61.3 ± 0.7
Prototypical Network + Dropout 1.9 ± 0.2 0.5 ± 0.2 1.4 ± 0.2 0.5 ± 0.1 51.9 ± 0.8 66.0 ± 0.4 44.8 ± 0.7 61.2 ± 0.9
Prototypical Network + L2 reg. 1.6 ± 0.2 0.4 ± 0.1 1.3 ± 0.1 0.3 ± 0.2 52.5 ± 0.8 66.3 ± 0.4 45.0 ± 0.7 61.4 ± 0.7
Prototypical Network + U-A 1.5 ± 0.3 0.4 ± 0.1 1.2 ± 0.1 0.2 ± 0.2 52.6 ± 0.7 66.3 ± 0.5 45.4 ± 0.5 61.8 ± 0.8
Prototypical Network + UR 1.2 ± 0.3 0.4 ± 0.1 1.0 ± 0.2 0.2 ± 0.2 52.6 ± 0.8 66.8 ± 0.5 46.8 ± 0.5 64.4 ± 0.9

Table 2: Uniform Priors achieve State-of-the-art on Meta-Dataset. Application of uniformity regularization
with Universal Representation Transformer Layers [30] on Meta-Dataset improves further upon the state-of-
the-art performance of URT. Numbers listed in blue represent the state-of-the-art on the MetaDataset tasks.

Meta-Dataset ILSVRC Omniglot Aircrafts Birds Textures QuickDraw

TaskNorm 50.6 ± 1.1 90.7 ± 0.6 83.8 ± 0.6 74.6 ± 0.8 62.1 ± 0.7 74.8 ± 0.7
SUR 56.3 ± 1.1 93.1 ± 0.5 85.4 ± 0.7 71.4 ± 1.0 71.5 ± 0.8 81.3 ± 0.8
SimpleCNAPS 58.6 ± 1.1 91.7 ± 0.6 82.4 ± 0.7 74.9 ± 0.8 67.8 ± 0.8 77.7 ± 0.7

URT 55.7 ± 1.0 94.4 ± 0.4 85.8 ± 0.6 76.3 ± 0.8 71.8 ± 0.7 82.5 ± 0.6
URT + UR 58.3 ± 0.9 95.2 ± 0.2 88.0 ± 0.9 76.7 ± 0.8 74.9 ± 0.9 84.0 ± 0.3

Meta-Dataset Fungi VGGFlower TrafficSigns MSCOCO Average Rank

TaskNorm 48.7 ± 1.0 89.6 ± 0.6 67.0 ± 0.7 43.4 ± 1.0 4.5
SUR 63.1 ± 1.0 82.8 ± 0.7 70.4 ± 0.8 52.4 ± 1.1 3.2
SimpleCNAPS 46.9 ± 1.0 90.7 ± 0.5 73.5 ± 0.7 46.2 ± 1.1 3.2

URT 63.5 ± 1.0 88.2 ± 0.6 69.4 ± 0.8 52.2 ± 1.1 2.6
URT + UR 62.8 ± 1.1 90.3 ± 0.4 72.9 ± 0.8 54.6 ± 1.1 1.5

and Matching networks, we also compare directly with other forms of regularization including L2
Regularization, Dropout and directly with the method Uniformity-Alignment [57]. As can be seen,
the addition of uniformity regularization benefits generalization across method and benchmark, in
some cases notably. We find that this holds regardless of the number of shots used at meta-test-time,
though we find the largest performance gains in the 1-shot scenario. Overall, the results highlight
the benefit of reduced training-task bias introduced by uniformity regularization for fast adaptation
to novel test tasks.

4.3 Uniform Priors achieve State-of-the-art on Meta-Dataset

To measure the benefits for large-scale few-shot learning problems, we further examine uniformity
regularization on the Meta-Dataset [53], which contains data from diverse domains such as natural
images, objects and drawn characters. We follow the setup suggested by [53], used in [30], in which
eight out of the ten available datasets are used for training, while evaluation is done over all. Results
are averaged across varying numbers of ways and shots.
We apply uniformity regularization on the state-of-the-art Universal Representation Transformer
(URT) [30], following their implementation and setup without hyperparameter tuning. As shown in
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Table 2, uniformity regularization provides consistent improvements upon URT, matching or even
outperforming the state-of-the-art on all sub-datasets.

5 Related Work

Adversarial Representation Learning. Latent variable models (e.g. Adversarial Autoencoders),
have used GAN-style training [15] in the latent space [32, 52] to learn a rich posterior. Recent
efforts have made such training effective in different contexts like active learning [46, 22] or domain
adaptation [54, 18]. It has also found usage in Unsupervised representation learning (URL) [3, 2],
ensemble-based representation learning [45, 33, 39] and continual learning [10]. In this work, we
utilize adversarial training to introduce efficient uniformity regularization to improve fast adaptation
and generalization of networks.

Meta-Learning. Many types of meta-learning algorithms for few-shot learning have recently been
proposed such as memory-augmented methods [37, 34, 42], metric-based approaches [56, 47, 48]
or optimization-based techniques [29, 11, 36, 58, 35]. More recently, finetuning using ImageNet
[41] pretraining [6, 13] and episode-free few-shot approaches [51] have shed new light on alterna-
tive approaches. Different unsupervised approaches have also been used to learn such initializations
[5, 21]. Conversely, Meta-Learning has also been utilizes as a process of refinement for unsuper-
vised representation [19]. Meta-learning has also been explored for fast adaptation of novel tasks in
reinforcement learning [25, 59, 20].

Conclusion

In this paper, we propose a regularization technique for the challenging task of fast adaptation to
novel tasks and data in neural networks. We present a simple and general solution, uniformity reg-
ularization, to reduce training bias and encourage networks to learn more reusable features. Over
Meta-Learning baselines and benchmarks as well as the large-scale Meta-Dataset, we find improve-
ments and even achieve state-of-the-art performance, highlighting the role of uniformity of the prior
over learned features for generalization and adaptation.
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