
A Appendix

A.1 Notations

We introduce here several notations used throughout the main theoretical meta-learning papers
[3, 10, 11]. We denote by µXt the marginal distribution of xt and its covariance matrix by
Σt = Ex∼µXt

[xxT ]. We further use σi(·) to denote the ith singular value of a matrix, let
R̄ = ||φ̂∗W∗||∗/

√
T , where || · ||∗ denotes the nuclear norm and φ̂∗ is the matrix of the trans-

formation applied to the samples from X. The point-wise and uniform covariance convergence
refers to the fact that empirical covariance matrices converge to their true counterparts with the
increasing number of samples. In [10], the authors further assume that random vectors have zero
mean, i.e., Ex∼µXt

[x] = 0 for all t and that x ∼ µXt
can be written as Σ

1/2
t x̄ with x̄ having

zero mean and identity covariance matrix. Finally, when considering a two-layer neural network
(NN) with Rectifier Linear Unit (ReLU) activation function, the data generating model presented
in Eq. 2 is modified by applying the ReLU activation to φ̂(·). This is denoted as a teacher
network assumption. As, for the work of [11], we refer to the method of methods when using
SVD to find the top k singular vectors of 1

n1

∑T
t=1

∑n1

i=1 y
2
t,ixt,ix

T
t,i, while the linear regression

stands for calculating the traditional closed-form solution on the transformed target task given by
ŵT+1 = (

∑n2

i=1 φ̂(xT+1,i)φ̂(xT+1,i)
T )−1φ̂T

∑n2

i=1 xT+1,iyT+1,i.

A.2 Review of the meta-learning theory

We now formulate the main results of the three main theoretical analyses of meta-learning provided
in [3, 10, 11] in Table 2.

Paper Assumptions Φ Bound

[3] A1. ∀t ∈ [[T + 1]], µt ∼ η – O
(

1√
n1

+ 1√
T

)

[10]

A2.1. ∀t, x̄ is ρ2-subgaussian

A2.2. ∀t ∈ [[T ]],∃c > 0 : Σt � cΣT+1 A2.1-2.4, linear, k � d O
(

kd
cn1T

+ k
n2

)
A2.3. σ1(W

∗)
σk(W∗) = O(1) A2.3-2.5, general, k � d O

(
C(Φ)
n1T

+ k
n2

)
A2.4. w∗

T+1 ∼ µw : ||Ew∼µw [wwT ]|| ≤ O( 1k ) A2.1,2.5,2.6, linear + `2 regul., k � d σR̄Õ
(√

Tr(Σ)√
n1T

+
√

||Σ||2√
n2

)
A2.5. ∀t, pt = p,Σt = Σ A2.1,2.5,2.6,2.7, two-layer NN (ReLUs+ `2 regul.) σR̄Õ

(√
Tr(Σ)√
n1T

+
√

||Σ||2√
n2

)
A2.6. Point-wise+unif. cov. convergence

A2.7. Teacher network

[11]

A3.1. ∀t, x ∼ µXt
is ρ2-subgaussian

A1-4, linear, k � d Õ
(

kd
n1T

+ k
n2

)A3.2. σ1(W
∗)

σk(W∗) = O(1)

A3.3. Ŵ learned using the Method of Moments

A3.4. w∗
T+1 is learned using Linear Regression

Table 2: Overview of main theoretical contributions related to meta-learning with their assumptions,
considered classes of representations and the obtained bounds on the excess risk. Here Õ(·) hides
logarithmic factors.

One may note that all the assumptions presented in this table can be roughly categorized into two
groups. First one consists of the assumptions related to the data generating process (A1, A2.1, A2.4-7
and A3.1), technical assumptions required for the manipulated empirical quantities to be well-defined
(A2.6) and assumptions specifying the learning setting (A3.3-4). We put them together as they are
not directly linked to the quantities that we optimize over in order to solve the meta-learning problem.
The second group of assumptions include A2.2 and A3.2: both defined as a measure of diversity
between source tasks’ predictors that are expected to cover all the directions of Rk evenly. This
assumption is of primary interest as it involves the matrix of predictors optimized in Eq. 1 as thus one
can attempt to force it in order for Ŵ to have the desired properties. Finally, we note that assumption
A3.2 related to the covariance dominance can be seen as being at the intersection between the two
groups. On the one hand, this assumption is related to the population covariance and thus is related
to the data generating process that is supposed to be fixed. On the other hand, we can think about a
pre-processing step that precedes the meta-train step of the algorithm and transforms the source and
target tasks’ data so that their sample covariance matrices satisfy A3.2. While presenting a potentially
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interesting research direction, it is not clear how this can be done in practice especially under a
constraint of the largest value of c required to minimize the bound.

A.3 Intuition behind the assumptions

An intuition behind the assumptions and the regularization terms can be seen in Fig. 3.
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Figure 3: Illustration of the intuition behind the assumptions derived from the few-shot learning
theory. (left) When the assumptions are satisfied, the linear predictors cover the embedding space
evenly and their norm remains roughly constant on source tasks making them useful for a previously
unseen task. (right) Lack of diversity and increasing norm of the linear predictors restrict them from
being useful on the target task.

A.4 Existence of the subgradients of singular values functions

According to [30], in their theorem 7.1, subgradients of singular values function are defined for
absolutely symmetric functions. In our case, we are computing the squared singular values σ2(W )
and we retrieve the singular values by taking the square root before the ratio or the entropy. This
means that effectively, we are computing Rσ(W ) = max(|σ(W )|)/min(|σ(W )|) and Hσ(W ) =

−
∑N

i=1 softmax(|σ(W )|)i · log softmax(|σ(W )|)i, which are both absolutely symmetric functions.
Consequently, subgradients of both Rσ and Hσ are defined.

A.5 Detailed experimental setups

Omniglot [21] is a dataset of 20 instances of 1623 characters from 50 different alphabets. Each
image was hand-drawn by different people. The images are resized to 28× 28 pixels and the classes
are augmented with rotations by multiples of 90 degrees.

miniImageNet [22] is a dataset made from randomly chosen classes and images taken from the
ILSVRC-12 dataset [31]. The dataset consists of 100 classes and 600 images for each class. The
images are resized to 84× 84 pixels.

tieredImageNet [23] is also a subset of ILSVRC-12 dataset. However, unlike miniImageNet,
training classes are semantically unrelated to testing classes. The dataset consists of 779, 165 images
divided into 608 classes. Here again, the images are resized to 84× 84 pixels.

A.6 Performance comparisons with according evaluation settings

Table 3 shows the performance of our reproduced methods, MAML[24], PROTONET[26], BASE-
LINE[22] and BASELINE++[27], compared to the reported results for the according training and
evaluation setting to validate our implementations. We can see that our performance are on par with
corresponding reported results and we attribute the differences to minor variations in implementations
such as data augmentation. Table 4 provides the detailed performance of our reproduced methods
with and without our regularization (or normalization for PROTONET). Theses results are summarized
in Table 1 of our paper and discussions about them can be found in Section 4.
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Method Dataset Episodes Reported Reproduced

MAML

Omniglot
20-way 1-shot 93.7∗ ± 0.7% 91.72± 0.29%

20-way 5-shot 96.4∗ ± 0.1% 97.07± 0.14%

miniImageNet
5-way 1-shot 46.47† ± 0.82% 47.93± 0.83%

5-way 5-shot 62.71† ± 0.71% 64.47± 0.69%

tieredImageNet
5-way 1-shot / 50.08± 0.91%

5-way 5-shot / 67.5± 0.79%

PROTONET

Omniglot
20-way 1-shot 96.00] 95.56± 0.10%

20-way - 5-shot 98.90] 98.80± 0.04%

miniImageNet
5-way 1-shot 44.42† ± 0.84% 49.53± 0.41%

5-way 5-shot 64.24† ± 0.72% 65.10± 0.35%

tieredImageNet
5-way 1-shot / 51.95± 0.45%

5-way 5-shot / 71.61± 0.38%

BASELINE

Omniglot
20-way 1-shot / 78.18± 0.43%

20-way 5-shot / 95.34± 0.15%

miniImageNet
5-way 1-shot 42.11† ± 0.71% 42.35± 0.73%

5-way 5-shot 62.53† ± 0.69% 59.58± 0.71%

tieredImageNet
5-way 1-shot / 44.59± 0.76%

5-way 5-shot / 66.38± 0.75%

BASELINE++

Omniglot
20-way 1-shot / 77.00± 0.49%

20-way 5-shot / 94.18± 0.17%

miniImageNet
5-way 1-shot 48.24† ± 0.75% 48.06± 0.76%

5-way 5-shot 66.43† ± 0.63% 65.00± 0.68%

tieredImageNet
5-way 1-shot / 52.70± 0.87%

5-way 5-shot / 71.58± 0.74%

Table 3: Our reproduced performances compared to reported performances from the according
evaluation settings. All accuracy results (in %) are averaged over 2400 test episodes and 4 different
random seeds and are reported with 95% confidence interval. ∗: Results reported from [12]. †:
Results reported from [25]. ]: Results reported from [26].

A.7 Ablative studies

In the following, we include ablative studies on the effect of each terms in our regularization scheme
to complete results given in Section 4 of our paper. In Table 5, we compared the performance of our
reproduced MAML without regularization, with a regularization on the ratio of singular values, on the
norm of the linear predictors, and with both regularization terms on Omniglot. We can see that both
regularization terms are important in the training and that using only a single term can be detrimental
to the training results.
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Method Dataset Episodes without Reg./Norm. with Reg./Norm.

MAML

Omniglot
1-shot 91.72± 0.29% 95.67± 0.20%

5-shot 97.07± 0.14% 98.24± 0.10%

miniImageNet
1-shot 47.93± 0.83% 49.16± 0.85%

5-shot 64.47± 0.69% 66.43± 0.69%

tieredImageNet
1-shot 50.08± 0.91% 51.5± 0.90%

5-shot 67.5± 0.79% 70.16± 0.76%

PROTONET

Omniglot
1-shot 95.56± 0.10% 95.89± 0.10%

5-shot 98.80± 0.04% 98.80± 0.04%

miniImageNet
1-shot 49.53± 0.41% 50.29± 0.41%

5-shot 65.10± 0.35% 67.13± 0.34%

tieredImageNet
1-shot 51.95± 0.45% 54.05± 0.45%

5-shot 71.61± 0.38% 71.84± 0.38%

BASELINE

Omniglot
1-shot 86.85± 0.36% 73.65± 0.52%

5-shot 96.95± 0.12% 97.61± 0.11%

miniImageNet
1-shot 42.35± 0.73% 43.87± 0.75%

5-shot 59.58± 0.71% 61.24± 0.71%

tieredImageNet
1-shot 44.59± 0.76% 50.02± 0.82%

5-shot 66.38± 0.75% 68.30± 0.74%

BASELINE++

Omniglot
1-shot 82.5± 0.39% 75.21± 0.47%

5-shot 95.49± 0.15% 93.25± 0.20%

miniImageNet
1-shot 48.06± 0.76% 48.45± 0.78%

5-shot 65.00± 0.68% 64.87± 0.68%

tieredImageNet
1-shot 52.70± 0.87% 52.98± 0.88%

5-shot 71.58± 0.74% 70.86± 0.74%

Table 4: Performance of several meta-learning algorithms without and with our regularization (or
normalization in the case of PROTONET) to enforce the theoretical assumptions. All accuracy
results (in %) are averaged over 2400 test episodes and 4 different seeds and are reported with 95%
confidence interval. Episodes are 20-way classification for Omniglot and 5-way classification for
miniImageNet and tieredImageNet.

In Table 6, we report the performance of our reproduced PROTONET without normalization, with
normalization and with both normalization and regularization on the entropy. We can see that further
enforcing a regularization on the singular values (through the entropy) does not help the training
since PROTONET naturally learns to minimize the singular values of the prototypes.

In Table 7 and 8, we show the effect of regularization on different part of the training process of
BASELINE and BASELINE++ respectively. The regularization used in training is limited to the ratio
of singular values Rσ, whereas during finetuning, we regularize both the ratio Rσ and the norm
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Episodes Reproduced Ratio Norm Ratio + Norm

20-way 1-shot 91.72± 0.29% 89.86± 0.31% 92.80± 0.26% 95.67± 0.20%

20-way 5-shot 97.07± 0.14% 72.47± 0.17% 96.99± 0.14% 98.24± 0.10%

Table 5: Ablative study of the regularization parameter for MAML on Omniglot. All accuracy results
(in %) are averaged over 2400 test episodes and 4 different random seeds and are reported with 95%
confidence interval. Using both regularization terms is important.

Dataset Episodes Reproduced Norm Norm + Entropy

Omniglot
20-way 1-shot 95.56± 0.10% 95.89± 0.10% 91.90± 0.14%

20-way 5-shot 98.80± 0.04% 98.80± 0.04% 96.40± 0.07%

miniImageNet
5-way 1-shot 49.53± 0.41% 50.29± 0.41% 49.43± 0.40%

5-way 5-shot 65.10± 0.35% 67.13± 0.34% 65.71± 0.35%

tieredImageNet
5-way 1-shot 51.95± 0.45% 54.05± 0.45% 53.54± 0.44%

5-way 5-shot 71.61± 0.38% 71.84± 0.38% 70.30± 0.40%

Table 6: Performance of PROTONET with and without our regularization on the entropy and/or
normalization. All accuracy results (in %) are averaged over 2400 test episodes and 4 different
random seeds and are reported with 95% confidence interval. Further enforcing regularization on the
singular values can be detrimental to performance.

‖WN‖F . We can see that for BASELINE, similarly to MAML, both regularization terms are important
on miniImageNet and tieredImageNet. For BASELINE++, on the other hand, learning with any of the
regularization terms neither improves nor decreases performance in a statistically significant manner.

Dataset Episodes Reproduced Reg. in training Reg. in finetuning Reg. in both

miniImageNet
5-way 1-shot 42.35± 0.73% 43.12± 0.73% 43.32± 0.76% 43.87± 0.75%

5-way 5-shot 59.58± 0.71% 60.17± 0.71% 60.72± 0.70% 61.24± 0.71%

tieredImageNet
5-way 1-shot 44.59± 0.76% 49.49± 0.83% 45.78± 0.75% 50.02± 0.82%

5-way 5-shot 66.38± 0.75% 68.66± 0.74% 66.19± 0.74% 68.30± 0.74%

Table 7: Ablative study on the effect of the regularization on different parts of training process of
BASELINE. All accuracy results (in %) are averaged over 2400 test episodes and 4 random seeds
and are reported with 95% confidence interval. Similarly to MAML, both regularization terms are
important.

In Tables 9 and 10, we show that by tuning the hyperparameters λ1 and λ2, we can adjust the strength
of the regularization and improve the performance even when assumptions are naturally met. In these
experiments, we considered λ1 = λ2 = λ.

A.8 More recent algorithms

In Table 11, we provide results with and without our regularization on a more recent meta-learning
algorithm, Meta-Curvature [28]. In Figure 4, we show the evolution of ‖WN‖F and Rσ during
training. Similarly to MAML, Meta-Curvature violates both assumptions. We can see that our
regularization is still effective for more recent algorithms.
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Dataset Episodes Reproduced Reg. in training Reg. in finetuning Reg. in both

miniImageNet
5-way 1-shot 48.06± 0.76% 47.83± 0.78% 48.66± 0.79% 48.45± 0.78%

5-way 5-shot 65.00± 0.68% 64.71± 0.68% 65.35± 0.68% 64.87± 0.68%

tieredImageNet
5-way 1-shot 52.70± 0.87% 52.75± 0.87% 52.83± 0.87% 52.98± 0.88%

5-way 5-shot 71.58± 0.74% 71.03± 0.74% 71.64± 0.74% 70.86± 0.74%

Table 8: Ablative study on the effect of the regularization on different parts of training process
of BASELINE++. All accuracy results (in %) are averaged over 2400 test episodes and 4 random
seeds and are reported with 95% confidence interval. Similarly to PROTONET, further enforcing
regularization does not improve nor decrease performance.

Dataset Episodes Reproduced λ = 0 λ = 1 λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001

miniImageNet
5-way 1-shot 49.53± 0.41% 50.29± 0.41% 49.43± 0.40% 50.19± 0.41% 50.44± 0.42% 50.46± 0.42% 50.45± 0.42%

5-way 5-shot 65.10± 0.35% 67.13± 0.34% 65.71± 0.35% 66.69± 0.36% 66.69± 0.34% 67.2± 0.35% 67.12± 0.35%

Omniglot
20-way 1-shot 95.56± 0.10% 95.89± 0.10% 91.90± 0.14% 94.38± 0.12% 95.60± 0.10% 95.7± 0.10% 95.77± 0.10%

20-way 5-shot 98.80± 0.04% 98.80± 0.04% 96.40± 0.07% 97.93± 0.05% 98.62± 0.04% 98.76± 0.04% 98.91± 0.03%

Table 9: Ablative study on the strength of the regularization with normalized PROTONET. All
accuracy results (in %) are averaged over 2400 test episodes and 4 random seeds and are reported
with 95% confidence interval.

Model Episodes λ = 0 λ = 1 λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001

BASELINE
20-way 1-shot 86.85± 0.36% 73.65± 0.52% 84.27± 0.37% 87.51± 0.33% 87.44± 0.33% 87.58± 0.32%

20-way 5-shot 96.95± 0.12% 97.61± 0.11% 97.10± 0.12% 97.26± 0.11% 97.14± 0.11% 97.23± 0.11%

BASELINE++
20-way 1-shot 82.5± 0.39% 75.21± 0.47% 81.24± 0.39% 82.58± 0.37% 82.36± 0.39% 82.27± 0.39%

20-way 5-shot 95.49± 0.15% 93.25± 0.20% 95.07± 0.15% 95.56± 0.14% 95.46± 0.14% 95.32± 0.15%

Table 10: Ablative study on the strength of the regularization with BASELINE and BASELINE++. All
accuracy results (in %) are averaged over 2400 test episodes and 4 random seeds and are reported
with 95% confidence interval.

Episodes Reproduced Ratio + Norm

5-way 1-shot 49.28± 0.84% 49.64± 0.84%

5-way 5-shot 63.74± 0.69% 65.67± 0.69%

Table 11: Performance of Meta-Curvature with and without our regularization on miniImageNet. All
accuracy results (in %) are averaged over 2400 test episodes and 4 different random seeds and are
reported with 95% confidence interval.
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Figure 4: Evolution of ‖WN‖F (top-left), Rσ (top-right) and validation accuracy (bottom) when
training of Meta-Curvature on miniImageNet 5 with shots. All curves were averaged over 4 different
random seeds. ‖WN‖F and Rσ increase during training and violate Assumptions 1-2. With our
regularization, ‖WN‖F and Rσ are constant during training in accordance with theory and we
achieve better generalization on the validation set.
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