A Meta-Learning Approach for Graph
Representation Learning in Multi-Task Settings

Davide Buffelli
Department of Information Engineering
University of Padova
Padova, Italy

Fabio Vandin
Department of Information Engineering
University of Padova
Padova, Italy

davide.buffelli@unipd.it fabio.vandin@unipd.it

Abstract

Graph Neural Networks (GNNs) are a framework for graph representation learn-
ing, where a model learns to generate low dimensional node embeddings that
encapsulate structural and feature-related information. GNNs are usually trained in
an end-to-end fashion, leading to highly specialized node embeddings. However,
generating node embeddings that can be used to perform multiple tasks (with
performance comparable to single-task models) is an open problem. We propose
a novel meta-learning strategy capable of producing multi-task node embeddings.
Our method avoids the difficulties arising when learning to perform multiple tasks
concurrently by, instead, learning to quickly (i.e. with a few steps of gradient
descent) adapt to multiple tasks singularly. We show that the embeddings produced
by our method can be used to perform multiple tasks with comparable or higher

performance than classically trained models. Our method is model-agnostic and
task-agnostic, thus applicable to a wide variety of multi-task domainsﬁ

1 Introduction

Graph Neural Networks (GNNs) are
deep learning models that operate on
graph structured data obtaining great
empirical performance, and are a very
active area of research. Three tasks in
particular have received the most atten-
tion: graph classification, node classifi-
cation, and link prediction. GNNs are
centered around the concept of node
representation learning, and typically
follow the same architectural pattern
with an encoder-decoder structure [9,
41, 128]. The encoder produces node em-
beddings (low-dimensional vectors cap-
turing structural and feature-related in-
formation about each node), while the
decoder uses the embeddings to carry

Node

Graph Ci

Link Prediction

1321% 4 o000

Accuracy
o o

°

NC  GC->NC  LP->NC

(a)

Accuracy
o o

e Original Embeddings
Transferred Embeddings

-10.82%

- 21.29%

GC  NC->GC LP->GC

(b)

P NC>LP GC->LP

(©)

Figure 1: Performance drop when transferring node em-
beddings between (a) Node Classification (NC), (b) Graph
Classification (GC), and (c) Link Prediction (LP) on the
ENZYMES dataset. “x ->y” indicates that the embeddings
obtained from a model trained on task x are used for task y.

out the desired downstream task. The model is then trained in an end-to-end manner, giving rise to
highly specialized node embeddings. In fact, taking the embeddings from a trained GNN, and using
them to train a decoder for a different task, leads to substantial performance loss (see Figure[T).

'For the interested reader, the Appendix is provided as supplementary material.

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.



The low transferability of node embeddings requires the use of task-specific encoders and decoders.
However, many practical machine learning applications operate in resource-constrained environments
where being able to share parameters between tasks is of great importance. Learning models that
perform multiple tasks is known as Multi-Task Learning (MTL), and is an open area of research [26].

We show that training a multi-head model with the classical procedure, i.e. by performing multiple
tasks concurrently on each graph, and updating the parameters with some form of gradient descent to
minimize the sum of the single-task losses, can lead to performance loss with respect to single-task
models. We then propose a novel optimization-based meta-learning [6] procedure that can generate
node embeddings that generalize across tasks. Our meta-learning procedure does not aim at a setting
of the parameters that can perform multiple tasks concurrently (like a classical method would do),
or to a setting that allows fast multi-task adaptation (like traditional meta-learning), but to a setting
that can easily be adapted to perform each of the tasks singularly. In fact, our procedure aims at
a setting of the parameters where a few steps of gradient descent on a given task, can lead to good
performance on that task, hence removing the burden of learning to solve multiple tasks concurrently.

‘We summarize our contributions as follows:

e We propose a novel meta-learning strategy for multi-task representation learning. We apply it
on graph MTL, and show that a GNN trained with our method produces higher quality node
embeddings with respect to classical training procedures. Our method is model-agnostic
and rask-agnostic, thus easily applicable to a wide range of multi-task domains.

o To the best of our knowledge, we are the first to propose a GNN model generating a single
set of node embeddings that can be used to perform the three most common graph-related
tasks. In fact, our embeddings lead to comparable or higher performance with respect to
single-task models even when used as input to a simple linear classifier.

e We show that the episodic training strategy in our meta-learning procedure leads to better
node embeddings even for single-task models. We believe this finding provides interesting
directions for future work on connections between meta-learning and representation learning.

2 Related Work

GNNs, MTL, and meta-learning are very active areas of research. We highlight works that are at the
intersections of these subjects, and point the interested reader to comprehensive reviews of each field.

Graph Neural Networks. GNNs have a long history [23]], but in the past few years the field has
grown exponentially. Seminal works include ChebNet [5], GCN [13]], GAT [27], and GIN [29]. For a
thorough review of the field we refer the reader to Chami et al. [4] and Wu et al. [28]].

Multi-Task Learning. Works at the intersection of MTL and GNNSs have focused on multi-head
architectures for several applications [[19, 10,129, 22| [14], but no single model has been proposed for
the three most common tasks on graphs. Other works use GNNs as a tool for MTL: Liu et al. [16] use
GNN s to allow communication between tasks, while Zhang et al. [31] use GNNs to estimate the test
error of a MTL model. For an exhaustive review of deep MTL we refer to Vandenhende et al. [26].

Meta-Learning. Meta-Learning has attracted considerable attention (see the review by Hospedales
et al. [L1]]), specially in the area of few-shot learning. Some works use GNNs directly for few-shot
learning [[7], others as a tool for enhancing meta-learning [[15} 25], and others use meta-learning to
train GNNGs in few-shot learning scenarios for graph-related problems [32} 30} (12, [12} [1} 3} [21], Other
works combining meta-learning and GNNs involve adversarial attacks [33]] and active learning [17]].

3 Preliminaries

3.1 Graph Neural Networks

Many GNNs follow the message-passing paradigm [8]]. Let us represent a graph G = (A, X) with
an adjacency matrix A € {0,1}™*", and a node feature matrix X € R"*4, where the v-th row X,
represents the d dimensional feature vector of node v. Let H() ¢ R™*4" be the node representation
matrix at layer £. A message passing layer updates the representation of every node v as follows:

msg!") = AGGREGATE({H\" Vu € N, }), H{*Y = UPDATE(H(", msg(")

v o



where H(O) = X, NV, » 1s the set of neighbours of node v, AGGREGATE is a permutation invariant
function, and UPDATE is usually a neural network. After L message-passing layers, the final node
embeddings H(™) are used to perform a given task, and the network is trained end-to-end.

3.2 Model-Agnostic Meta-Learning and ANIL

MAML (Model-Agnostic Meta-Learning)[l6] is an optimization-based meta-learning strategy. Let fy
be a deep learning model, where 6 are its parameters. Let p(&) be a distribution over episodes’| An
episode &; ~ p(€) is defined as a tuple containing a loss function Lg,, a support set Sg,, and a target
set Te,: & = (Lg,(+), Se,, Te;) (support and target sets are sets of labelled examples). MAML’s goal
is to find a value of # that can quickly, i.e. in a few steps of gradient descent, be adapted to new
episodes. This is done with a nested loop optimization procedure: an inner loop adapts the parameters
to the support set of an episode by performing some steps of gradient descent, and an outer loop
updates the initial parameters to allow fast adaptation. Formally, let 8;(¢) be the parameters after ¢
adaptation steps on the support set of episode &;, then the computations in the inner loop are

0;(t) = 0;(t = 1) — aVg1—1)Le, (fort-1), Se,), with ;(0) = 0

where L£(fg;(1-1), Se;) indicates the loss over the support set Sg, of the model with parameters
0L(t — 1), and « is the learning rate. The meta-objective that the outer loop tries to minimize is
defined as Lyerg = D Eimp(E) Le,( fg; (t)» Te; ), which leads to the following parameter updateﬂ

0=0—BVoLlmew=0-BVe »  Le(for)Te)
Ei~p(€)

Raghu et al. [22] showed that feature reuse is the dominant factor in MAML.: in the adaptation loop,
only the last layer(s) in the network are updated, while the first layer(s) remain almost unchanged.
The authors then propose ANIL (Almost No Inner Loop) where they split the parameters in two sets:
one that is used for adaptation in the inner loop, and one that is only updated in the outer loop. This
simplification leads to computational improvements while maintaining performance.

4 Our Method

Our novel representation learning technique, based on meta-learning, is built on three insights:

(i) optimization-based meta-learning is implicitly learning robust representations. The findings
by Raghu et al. [22] suggest that in a model trained with MAML, the first layer(s) learn features that
are reusable across episodes, while the last layer(s) are set up for fast adaptation. MAML is then
implicitly focusing on learning reusable representations that generalize across episodes.

(ii) meta-learning episodes can be designed to encourage generalization. If we design support
and target set to mimic the training and validation sets of a classical training procedure, then the
meta-learning procedure is effectively optimizing for generalization.

(iii) meta-learning can learn to quickly adapt to multiple tasks singularly, without having to
learn to solve multiple tasks concurrently. We design the meta-learning procedure so that, for each
considered task, the inner loop adapts the parameters to a task-specific support set, and tests the
adaptation on a task-specific target set. The outer loop then updates the parameters to allow fast
multiple single-task adaptation. This strategy is searching for a parameter setting that can be easily
adapted for good single-task performance, without learning to solve multiple tasks concurrently. (See
Appendix A for a comparison with classical training and meta-learning strategies.)

Based on (i) and (i), we develop a novel meta-learning procedure where the inner loop adapts to
multiple tasks singularly, each time with the goal of single-task generalization. Using an encoder-
decoder architecture, and episodes that involve adapting to multiple tasks, (i) suggests that this
procedure leads to an encoder that learns features that are reusable across episodes (and hence tasks).

Intuition. Training multi-task models is challenging, as tasks may negatively interfere with each other
[24]. We design a meta-learning procedure where the learner does not have to find a configuration of

The meta-learning literature usually derives episodes from fasks (i.e. tuples containing a dataset and a loss
function). We focus on episodes to avoid using the term fask for both a MTL task, and a meta-learning task.
3We limit ourself to one step of gradient descent for clarity, but any optimization strategy could be used.



Support Set Target Set
’

Node : Multi-head i

Node Multi-head } > H H
i . Embeddings  Output Layer } Embeddings  : Output Layer i
:iAdapt in inner loop ¢ Adaptin
i iupdate in outer loop i inner loop i

©

Figure 2: (a) Multi-task episode: for each task, support and target sets mimic training and validation
sets. (b) iISAME: both backbone and task-specific output layers are adapted (one at a time) in the
inner loop. (c) eSAME: only task-specific output layers are adapted (one at a time) in the inner loop.

the parameters that concurrently performs all tasks, but a configuration that can easily be adapted
to perform each of the tasks singularly. Finally, leveraging the robust representation learning that
happens with MAML and ANIL, we can extract an encoder generating node representations that
generalize across tasks.

We now formally present our novel meta-learning procedure in three steps: (1) Episode Design: how
is a an episode composed, (2) Model Architecture Design: what is the architecture of our model,
(3) Meta-Training Design: how, and which, parameters are adapted/updated.

4.1 Episode Design

In our case, an episode becomes a multi-task episode (Figure |Z| (a)). Let us consider the case where
the tasks are graph classification (GC), node classification (NC), and link prediction (LP). We define

a multi-task episode 51-(m) ~ p(E™) as a tuple Ei(m) = (L',gT)7 Sgin), Tg(im)), with

ﬁ(gT) _ )\(GC)ﬁ(g?C) + )\(NC’)EgC) + /\(LP)L:(;ZP)

m GC) o(NC) o(LP m GC NC LP

S = (880,509,887, T = (7.9, 7900, 7
where \(*) are balancing coefficients. The meta-objective of our method then becomes:

Lo =3 AEOLED L \NOLTO L \EP) 4D,

eim™ ~p(em)

Support and target sets are set up to resemble a training and a validation set. Therefore the outer

loop’s objective becomes to maximize the performance on a validation set, given a training set, hence
pushing towards generalization (additional details are provided in Appendix B).

4.2 Model Architecture Design

We use an encoder-decoder model with a multi-head architecture. The backbone (which represents
the encoder) is a 3 layer GCN [[13]], while the decoder is composed of three heads (one per task) with
standard architectures. For additional information we refer the interested reader to Appendix C.

4.3 Meta-Training Design

To avoid the problems arising from training a model that performs multiple tasks concurrently, we
design a meta-learning procedure where the inner loop adaptation and the meta-objective computation
involve a single task at a time. Only the parameter update performed to minimize the meta-objective
involves multiple tasks, but, crucially, it does not aim at a setting of parameters that can solve, or
quickly adapt to, multiple tasks concurrently, but to a setting that allows multiple fast single-task
adaptation. The pseudocode of our procedure is in Algorithm [T} ADAPT performs a few steps of
gradient descent on a task specific loss function and support set, TEST computes the value of a
meta-objective component on a task specific loss function and target set, and UPDATE optimizes the
parameters by minimizing the meta-objective. Notice how the multiple heads of the decoder in our
model are never used concurrently.



Table 1: Results for a single-task model trained in a classical supervised manner (Cl), and a linear
classifier trained on the embeddings produced by our meta-learning strategies (iISAME, eSAME).

Task Model Dataset
ENZYMES PROTEINS DHFR COX2
Cl 87.5+1.9 72.3+44 97.3+0.2 964+0.3

NC iISAME  873+£0.8 81.8+16 96.6+0.3 96.1£0.4
eSAME 87.8+0.7 824+16 96.8=+0.2 96.5+0.6
Cl 51.6£42 733£3.6 T1H5+23 7T76.7L£47
GC iISAME  508+£29 735+12 73.2+£32 763£4.6
eSAME 52.1+50 726+16 71.6+24 756+4.1
Cl 75.5+£30 8.6£08 988+0.7 98.3+0.8
LP iISAME  81.7+£1.7 84.0+11 992+£04 99.1+£0.5
eSAME 80.1+34 84.1+09 992+03 99.24+0.7

Let us partition the parameters 6 of our
model in four sets: one representing the
backbone (Azcn), and one for each head Input :Model fp; Episodes £ = {&1, .., &}
Onc,0cc,0rp). We name our meta- init(6)

learning strategy SAME (Single-Task for &; in & do

Algorithm 1: Proposed Meta-Learning Procedure

Adaptation for Multi-Task Embeddings), o_loss <0

and present two variants (Figure 2] (b)- for t in (GC, NC, LP) do

(c)): implicit SAME (iISAME), and ex- 0'®) 9

plicit SAME (eSAME). In iSAME all 10 (t) p(t)

the parameters 6 are used for adaptation. 0™« ADAPT(fo, S¢s Le/) () (o)

iSAME makes use of the implicit feature- o_loss ¢ o_loss+TEST(fy, Tgl Le, )
reuse factor of MAML, leading to pa- end

rameters fgcen that are general across 0 «— UPDATE(@,O_lOSS7el(GC)’HI(NC)’GI(LP))

multi-task episodes. In eSSAME only the end
head parameters Onc, Ogc, OLp are used
for adaptation. eSAME explicitly aims at
parameters Ogcn that are general across multi-task episodes by only updating them in the outer loop.

S Experiments

Our goal is to assess the quality of the representations learned by our proposed method by answering
four questions (Q1-Q4). Furthermore, by examining the results of the two variants of SAME, we can
observe if the explicit strategy applied by eSAME is necessary for obtaining useful features, or if the
implicit mechanism of iSAME is enough. We use GC to refer to graph classification, NC for node
classification, and LP for link prediction. Unless otherwise stated, accuracy (%) is used for NC and
GC, while ROC AUC (%) is used for LP.

Experimental Setup. We consider datasets from the TUDataset library [20] that allow multi-task
settings, and perform a 10-fold cross validation. To ensure a fair comparison, we use the same
architecture for all training strategies. For more information we refer to Appendix D.

Q1: Do iSAME and eSAME lead to high quality node embeddings in the single-task setting? For
every task, we train a linear classifier on top of the embeddings produced by a model trained using
our proposed methods, and compare against a network with the same architecture trained in a classical
manner. Results are shown in Table[I| For all tasks, the linear classifier achieves comparable, if not
superior, performance to the end-to-end model. In fact, the linear classifier is never outperformed by
more than 2%, and it can outperform the classical end-to-end model by up to 12%.

Q2: Do iSAME and eSAME lead to high quality node embeddings in the multi-task setting? We
train a model with our proposed methods, on all multi-task combinations, and use the embeddings as
input for a linear classifier. We compare against single-task models trained in the classical manner,
and with a fine-tuning baseline. The latter is a model that has been trained on all three tasks, and then
fine-tuned on two specific tasks. The idea is that the initial training on all tasks should lead the model



Table 2: Results for a single-task model trained in a classical supervised manner, a fine-tuned model
(trained on all three tasks, and fine-tuned on the two shown tasks), and a linear classifier trained on
node embeddings learned with our proposed strategies (ISAME, eSAME) in a multi-task setting.

Task Dataset
GC NC LP ENZYMES PROTEINS DHFR COxX2
GC NC LP GC NC LpP GC NC LP GC NC LP
Classical End-to-End Training

v 51.6 73.3 71.5 76.7
v 87.5 72.3 97.3 96.4
v 75.5 85.6 98.8 98.3
Fine-Tuning
v v 48.3 85.3 73.6 72.0 66.4 924 80.0 92.3
v v 493 71.6 69.6 80.7 65.3 589 80.2 50.9
v v 87.7 73.9 80.4 81.5 80.7 56.6 874 523
iSAME (ours)
Ve Ve 50.1 86.1 73.1 76.6 71.6 94.8 752 954
v v 50.7 83.1 734 852 71.6 99.2 7175 98.9
v v 86.3 834 794 87.7 96.5 99.3 95.5 99.0
v v v. 50.0 865 823 714 76.6 87.3 712 955 99.5 754 952 99.2
eSAME (ours)
v v 51.7 86.1 71.5 79.2 70.1 95.7 75.6 955
v v 519 80.1 71.7 854 70.1 99.1 775 98.8
v v 86.7 82.2 80.7 86.3 96.6 994 95.6 99.1
v v v 515 863 81.1 713 79.6 86.8 702 953 99.5 77.7 957 98.8

towards the extraction of features that it would otherwise not consider (by only seeing 2 tasks), and
the fine-tuning process should then allow the model to use these features to target the specific tasks
of interest. Results are shown in Table[2] We notice that the linear classifier, achieves comparable
performance to the end-to-end models, as it is never outperformed by more than 3%, and in 50% of
the cases it actually performs better, confirming the high quality of the node embeddings learned with
iSAME and eSAME. We further notice that the fine-tuning baseline severely struggles, and is almost
always outperformed by both single-task models, and our proposed methods. These results indicate
that the episodic meta-learning procedure adopted by SAME is extracting features that are otherwise
not accessible with standard training techniques.

Q3: Do iSAME and eSAME extract infor-
mation that is not captured by classically

GC,NC -> LP GC,LP -> NC NC,LP -> GC

trained multi-task models? We train a net- 0 T m Grossica 06
work, which we refer to as classifier, on the ~ o¢ 08| o o -
embeddings generated by a multi-task model, Go g Sos
to perform a task that was not seen during 305 ;3 Goas

the training of the latter. We compare the per-
formance of the classifier on the embeddings
learned by a model trained in a classical man-
ner, and with our proposed methods. This test (@) (b) ©

allows us to quantify if our approaches lead _, .
to “more informative” node embeddings. Re- Figure 3: Results for neural network, trained on

sults on the ENZYMES dataset are shown in ¢ embeddings generated by a multi-task model,
Figure[3] We notice that embeddings learned performing a task that was not seen by the multi-task
by our proposed approaches lead to at least model. “x, y->2” indicates that x, y are the tasks for
10% higher performance. We observe an anal- training the multi-task model, and z is the new task.

ogous trend on the other datasets (as reported
in Appendix E).

Q4: Can the node embeddings learned by iSAME and eSAME be used to perform multiple tasks
with comparable or better performance than classical multi-task models? We train the same
multi-task model, both in the classical supervised manner, and with our proposed approaches, on




Table 3: A,,, (%) results for a classical multi-task model (Cl), a fine-tuned model (FT; trained on all
three tasks and fine-tuned on two) and a linear classifier trained on the node embeddings learned
using our meta-learning strategies (iISAME, eSAME) in a multi-task setting.

Task Model Dataset
GC NC LP ENZYMES PROTEINS DHFR COX2
Cl —0.1+0.5 4.0+1.0 —0.34+0.2 0.5+0.1
v v FT —45+1.2 0.1+0.5 —744+14 0.1+04
iSAME —-2.3+0.9 27+1.5 —-1.24+04 —-1.6+0.2
eSAME —0.8+0.8 3.2+14 —1.84+0.3 —-1.24+0.3
Cl —2534+32 —-53+1.2 —-283+43 -—-214+34
v v FT -514+19 —-54+15 —-245+37 —-226+3.8
iISAME 4.1+0.5 —-0.2+0.9 0.2+3.2 0.2+0.5
eSAME 3.2+04 —-12+1.1 —-0.7+34 —0.84+0.7
Cl 7.2+2.7 6.8+0.9 —2914+77 -—-282+45
v v FT —1.0+£0.3 3.1+1.2 —28904+6.4 —283+4.2
iSAME 44+1.1 6.1+1.0 —-0.14+6.2 —0.6 2.5
eSAME 3.9+1.3 6.1+1.1 0.1+64 —0.6 = 2.6
Cl 1.6 1.3 2.9+0.3 —1894+23 —-169+3.1
v Ve v.  iSAME 1.5+1.0 2.2+0.2 —-05+14 —-0.9+1.3
eSAME 1.8+0.9 2.8+0.2 —-1.0+1.7 —04+1.2

all multi-task combinations. For our approaches, we then train a linear classifier on top of the
node embeddings. We further consider the fine-tuning baseline introduced in Q2. We use the
A, metric [[18] , defined as the average per-task drop with respect to the single-task baseline:
A, = % ZiT:1 (My,,; — My ;) /My, ;, where M, ; is the value of a task’s metric for the multi-task
model, and Mj, ; is the value for the baseline. Results are shown in TableE} We first notice that usually
multi-task models achieve lower performance than specialized single-task ones. We then highlight
that linear classifiers trained on the embeddings produced by our procedures are comparable, and in
many cases superior, to end-to-end models. In fact, the latter are highly sensible to the tasks that are
being learned (e.g. GC and LP), with a worst-case average drop in performance of 29%. Our methods
seem much less sensible, with a worst-case average drop of less than 3%. Finally, we also notice
that the fine-tuning baseline generally performs worst than classically trained models, confirming
that transferring knowledge in multi-task settings is not easy, and more advanced techniques, like our
proposed method SAME, are needed.

Considerations on iSAME and eSAME. In all our experiments we notice that the performance
between the two variants of SAME achieve comparable results. This suggests that the representation
learning capabilities are an intrinsic property of optimization-based meta-learning approaches like
MAML [6]], and that strategies like ANIL [22] can help us lower the computational burden, while
maintaining the desired properties.

6 Conclusions

We propose a novel meta-learning strategy for representation learning in multi-task settings. Our
method overcomes the problems that arise when learning to solve multiple tasks concurrently by
optimizing for a parameter setting that can quickly, i.e. with few steps of gradient descent, be adapted
for high single-task performance on multiple tasks. We apply our method to graph representation
learning, and find that it leads to higher quality node embeddings, both in the multi-task and in the
single-task setting. We believe this work draws new interesting connections between meta-learning,
representation learning, and multi-task learning, providing many directions for future research.

References

[1] Ferran Alet, Erica Weng, Tomas Lozano-Perez, and L. Kaelbling. Neural relational inference
with fast modular meta-learning. In NeurIPS, 2019.



[2] Pedro Avelar, Henrique Lemos, Marcelo Prates, and Luis Lamb. Multitask learning on graph
neural networks: Learning multiple graph centrality measures with a unified network. In ICANN
Workshop and Special Sessions. 2019.

[3] Avishek Joey Bose, Ankit Jain, Piero Molino, and William L Hamilton. Meta-graph: Few shot
link prediction via meta learning. arXiv, 2019.

[4] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and K. Murphy. Machine
learning on graphs: A model and comprehensive taxonomy. arXiv, 2020.

[5] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In NeurIPS, 2016.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In ICML, 2017.

[7] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In /ICLR, 2018.

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

[9] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin, 2017.

[10] Chester Holtz, Onur Atan, Ryan Carey, and Tushit Jain. Multi-task learning on graphs with
node and graph level labels. In NeurIPS Workshop on Graph Representation Learning, 2019.

[11] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in
neural networks: A survey. arXiv, 2020.

[12] Jongmin Kim, Taesup Kim, S. Kim, and C. Yoo. Edge-labeling graph neural network for
few-shot learning. In CVPR, 2019.

[13] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[14] Diya Li and Heng Ji. Syntax-aware multi-task graph convolutional networks for biomedical
relation extraction. In LOUHI, 2019.

[15] Lu Liu, Tianyi Zhou, Guodong Long, Jing Jiang, and Chengqi Zhang. Learning to propagate
for graph meta-learning. In NeurIPS, 2019.

[16] Pengfei Liu, J. Fu, Y. Dong, Xipeng Qiu, and J. Cheung. Learning multi-task communication
with message passing for sequence learning. In AAAZ, 2019.

[17] Kaushalya Madhawa and Tsuyoshi Murata. Active learning on graphs via meta learning. In
ICML Workshop on Graph Representation Learning and Beyond, ICML, 2020.

[18] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Tasonas Kokkinos. Attentive single-tasking of
multiple tasks. In CVPR, 2019.

[19] Floriane Montanari, Lara Kuhnke, Antonius Ter Laak, and Djork-Arné Clevert. Modeling
physico-chemical ADMET endpoints with multitask graph convolutional networks. Molecules,
2019.

[20] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
Workshop on Graph Representation Learning and Beyond, 2020.

[21] Cuong Q. Nguyen, Constantine Kreatsoulas, and Branson Kim M. Meta-learning gnn ini-
tializations for low-resource molecular property prediction. In ICML Workshop on Graph
Representation Learning and Beyond, ICML, 2020.

[22] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In /CLR, 2020.



[23] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 2009.

[24] Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio
Savarese. Which tasks should be learned together in multi-task learning? In ICML, 2020.

[25] Qiuling Suo, Jingyuan Chou, Weida Zhong, and Aidong Zhang. Tadanet: Task-adaptive network
for graph-enriched meta-learning. In ACM SIGKDD, 2020.

[26] Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, Dengxin Dai, and Luc Van Gool.
Revisiting multi-task learning in the deep learning era. arXiv, 2020.

[27] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018.

[28] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

[30] Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh V.
Chawla, and Zhenhui Li. Graph few-shot learning via knowledge transfer. In AAAI, 2020.

[31] Yu Zhang, Ying Wei, and Qiang Yang. Learning to multitask. In NeurIPS, 2018.

[32] FanZhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-gnn:
On few-shot node classification in graph meta-learning. In CIKM, 2019.

[33] Daniel Ziigner and Stephan Giinnemann. Adversarial attacks on graph neural networks via meta
learning. In ICLR, 2019.



	Introduction
	Related Work
	Preliminaries
	Graph Neural Networks
	Model-Agnostic Meta-Learning and ANIL

	Our Method
	Episode Design
	Model Architecture Design
	Meta-Training Design

	Experiments
	Conclusions

