
A Sequence transformations used to construct classification and
transduction tasks

In tables 6, 7 we describe the transformations used to construct classification and transduction tasks,
respectively.

Transformation Description

S1

mul v Elementwise multiply by v
add v Elementwise add v
div v Elementwise integer division by v
mod v Elementwise modulo v operation

S2

(not) multiple of v Extract subset of integers that are (not) multiples of v
(not) greater of v Extract subset of integers that are (not) greater than v
(do not) have exactly v di-
visors

Extract subset of integers that (do not) have exactly v divisors

S3

count Sequence length
min Smallest integer in sequence
max Largest integer in sequence
mean Mean of sequence elements
median Median of sequence elements
mode Mode of sequence elements
first First element in sequence
last Last element in sequence
max-min Difference between largest and smallest elements in sequence
middle Element in the middle position of sequence

Table 6: Sequence transformations used to construct classification tasks and their descriptions. Each transfor-
mation takes a sequence as input and outputs a sequence (transformations in S1 and S2), or a single integer
(transformations in S1).

Transformation Description

S1

mul v Elementwise multiply by v
add v Elementwise add v
div v Elementwise integer division by v
mod v Elementwise modulo v operation

S2

reverse v with v0 Replace all occurrences of v in the sequence with v0

replace xi with f(xi, xj) Replace element xi with one of the following:
{axi + b, xj , abs(xi � xj), xi + xj} where a, b are integer
constants and xi, xj are elements of the sequence at position i, j
respectively

S3

sort ascending Sort the sequence in ascending order
sort descending Sort the sequence in descending order
reverse Reverse the sequence
swap(xi, xj) Swap elements at positions i, j of the sequence
shift right v Cyclic shift the sequence right by v positions

Table 7: Sequence transformations used to construct transduction tasks and their descriptions. Each transforma-
tion takes a sequence as input and outputs a sequence.

11

B Path-finding task

B.1 Non-compositional path-finding task

We present an example task from the path-finding task below. The grids are 10⇥ 10. The following
task is defined by the start position (7, 0) and end position (1, 4), indicated by the green and red
squares, respectively. Each example in the task corresponds to a particular configuration of obstacles
in the grid. The source sequence represents the locations of obstacles. The obstacles are represented
by the top left position of a 2⇥ 2 blob. The target sequence represents the optimal path from source
to target. Source and target sequences consist of rasterized grid coordinates (Eg. rasterized start and
end positions are 70 and 14, respectively). In addition, elements of the target sequence have an offset
of 100 (Eg. rasterized position 14 is represented as 114).

• Source: [39, 78, 51, 9, 31, 63, 44, 69], Target: [170, 160, 150, 140, 130, 121, 112, 103, 114]
• Source: [12, 35, 99, 22, 62, 44, 25, 21], Target: [170, 161, 152, 143, 134, 124, 114]
• Source: [90, 99, 1, 96, 34, 50, 94, 31], Target: [170, 171, 162, 152, 143, 133, 123, 114]

B.2 Compositional path-finding task

In the compositional setting, we require the optimal path to pass through a way-point, indicated in
yellow in the following grids. A task is thus defined by a start position, end position and way-point
position. The possible values for each of these three parameters represent the primitives in this
compositional setting.

• Source: [63, 38, 90, 93, 73, 68, 18, 67], Target: [126, 115, 124, 133, 142, 131, 122]
• Source: [95, 60, 95, 70, 23, 34, 83, 85], Target: [126, 115, 104, 113, 122, 131, 142, 131, 122]
• Source: [91, 29, 57, 96, 8, 53, 77, 13], Target: [126, 125, 134, 133, 142, 131, 122]

12

C Compositional TAM

Algorithm 2 presents the training algorithm for compositional TAM. We draw a training task T train

with primitive ids T1 = i1, T2 = i2, T3 = i3 respectively in line 3. These primitive ids index into the
primitive embedding table ✓e. We pretend that one of the primitives is unknown, and to illustrate
the algorithm, we assume without loss of generality that T2 = i2 is unknown (line 5). In the inner
loop optimization, we infer an embedding z for this unknown primitive using gradient descent, while
using the primitive embedding table to load the known primitive embeddings (✓e[i1], ✓e[i3] in this
case (lines 8, 9)).

Algorithm 2: Compositional TAM for k-shot Learning
Input :Training tasks T train

1 , ..., T train
N

Output :Model parameters ✓, primitive embeddings ✓e
1 ✓0 = ✓ [✓e
2 repeat
3 Sample training task T train with primitive ids T1 = i1, T2 = i2, T3 = i3
4 Sample k training examples from the task {(xj , yj)j=1,··· ,k} ⇠ T train

5 Pretend one of the primitives (chosen at random) is unknown, say T2

6 Initialize z = 0,�✓0 = 0
7 while loss improves and max iterations not reached do
8 z z �rz

Pk
j=1 � log p(yj |xj , z1 = ✓e[i1], z2 = z, z3 = ✓e[i3]; ✓0)

9 �✓0 �✓0 �r✓0
Pk

j=1� log p(yj |xj , z1 = ✓e[i1], z2 = z, z3 = ✓e[i3]; ✓0)

10 ✓0 ✓0 +�✓0

11 until max training iterations;

D Model Architecture

Figure 2 shows an illustration of how we use transformers for sequence classification (left) and
sequence transduction (right) problems. In the classification setting the input is a sequence (x1 · · ·xn)
and the output is a discrete label y. In the transduction setting, the input (x1 · · ·xn) and output
(y1 · · · ym) are sequences. z is an embedding vector we refer to as the task embedding and appears in
the input to the transformer, in addition to the input sequence. The task embedding z is task specific,
and is inferred on the fly for each task during training. Learning a new task T at test time involves
inferring the corresponding task embedding zT , leaving the rest of the model parameters untouched.

Transformer

z x1 x2 x3

y

Transformer

x1 x2 z y1

y1 y2

Figure 2: Illustration of how we use transformers for sequence classification (left) and sequence transduction
(right) problems.

13

	Introduction
	Problem Definition
	Approach
	Architecture
	Training and Inference Algorithm

	Related work
	Experiments
	Model and Training Details
	Baselines
	Sequence Classification and Transduction
	Synthetic Benchmarks
	Results

	Compositional Task Representations
	Task Construction
	Training
	Results

	Ablation experiments
	Discussion

	Conclusion
	Sequence transformations used to construct classification and transduction tasks
	Path-finding task
	Non-compositional path-finding task
	Compositional path-finding task

	Compositional TAM
	Model Architecture

