A Sequence transformations used to construct classification and transduction tasks

In tables 6 we describe the transformations used to construct classification and transduction tasks, respectively.

	Transformation	Description
S_{1}	mul v	Elementwise multiply by v
	add v	Elementwise add v
	$\operatorname{div} v$	Elementwise integer division by v
	$\bmod v$	Elementwise modulo v operation
S_{2}	(not) multiple of v	Extract subset of integers that are (not) multiples of v
	(not) greater of v	Extract subset of integers that are (not) greater than v
	(do not) have exactly v divisors	Extract subset of integers that (do not) have exactly v divisors
S_{3}	count	Sequence length
	min	Smallest integer in sequence
	max	Largest integer in sequence
	mean	Mean of sequence elements
	median	Median of sequence elements
	mode	Mode of sequence elements
	first	First element in sequence
	last	Last element in sequence
	max-min	Difference between largest and smallest elements in sequence
	middle	Element in the middle position of sequence

Table 6: Sequence transformations used to construct classification tasks and their descriptions. Each transformation takes a sequence as input and outputs a sequence (transformations in S_{1} and S_{2}), or a single integer (transformations in S_{1}).

	Transformation	Description
	mul v S_{1} add v div v	Elementwise multiply by v $\bmod v$
	reverse v with v^{\prime} S_{2} replace x_{i} with $f\left(x_{i}, x_{j}\right)$	Elementwise add v Elementwise integer division by v Replace all occurrences of v in the sequence with v^{\prime} $\left\{a x_{i}+b, x_{j}\right.$, abs $\left.\left(x_{i}-x_{j}\right), x_{i}+x_{j}\right\}$ where a, b are integer constants and x_{i}, x_{j} are elements of the sequence at position i, j respectively
		sort ascending S_{3} sort descending reverse
	Sort the sequence in ascending order swap $\left(x_{i}, x_{j}\right)$ shift right v	Sort the sequence in descending order Reverse the sequence Swap elements at positions i, j of the sequence

Table 7: Sequence transformations used to construct transduction tasks and their descriptions. Each transformation takes a sequence as input and outputs a sequence.

B Path-finding task

B. 1 Non-compositional path-finding task

We present an example task from the path-finding task below. The grids are 10×10. The following task is defined by the start position $(7,0)$ and end position $(1,4)$, indicated by the green and red squares, respectively. Each example in the task corresponds to a particular configuration of obstacles in the grid. The source sequence represents the locations of obstacles. The obstacles are represented by the top left position of a 2×2 blob. The target sequence represents the optimal path from source to target. Source and target sequences consist of rasterized grid coordinates (Eg. rasterized start and end positions are 70 and 14, respectively). In addition, elements of the target sequence have an offset of 100 (Eg. rasterized position 14 is represented as 114).

- Source: [39, 78, 51, 9, 31, 63, 44, 69], Target: [170, 160, 150, 140, 130, 121, 112, 103, 114]
- Source: $[12,35,99,22,62,44,25,21]$, Target: [170, 161, 152, 143, 134, 124, 114]
- Source: [90, 99, 1, 96, 34, 50, 94, 31], Target: [170, 171, 162, 152, 143, 133, 123, 114]

B. 2 Compositional path-finding task

In the compositional setting, we require the optimal path to pass through a way-point, indicated in yellow in the following grids. A task is thus defined by a start position, end position and way-point position. The possible values for each of these three parameters represent the primitives in this compositional setting.

- Source: $[63,38,90,93,73,68,18,67]$, Target: $[126,115,124,133,142,131,122]$
- Source: [95, 60, 95, 70, 23, 34, 83, 85], Target: [126, 115, 104, 113, 122, 131, 142, 131, 122]
- Source: [91, 29, 57, 96, 8, 53, 77, 13], Target: [126, 125, 134, 133, 142, 131, 122]

C Compositional TAM

Algorithm 2 presents the training algorithm for compositional TAM. We draw a training task $\mathcal{T}^{\text {train }}$ with primitive ids $T_{1}=i_{1}, T_{2}=i_{2}, T_{3}=i_{3}$ respectively in line 3 . These primitive ids index into the primitive embedding table θ_{e}. We pretend that one of the primitives is unknown, and to illustrate the algorithm, we assume without loss of generality that $T_{2}=i_{2}$ is unknown (line 5). In the inner loop optimization, we infer an embedding z for this unknown primitive using gradient descent, while using the primitive embedding table to load the known primitive embeddings $\left(\theta_{e}\left[i_{1}\right], \theta_{e}\left[i_{3}\right]\right.$ in this case (lines 8, 9)).

```
Algorithm 2: Compositional TAM for k-shot Learning
    Input :Training tasks \(\mathcal{T}_{1}^{\text {train }}, \ldots, \mathcal{T}_{N}^{\text {train }}\)
    Output:Model parameters \(\theta\), primitive embeddings \(\theta_{e}\)
    \(\theta^{\prime}=\theta \cup \theta_{e}\)
    repeat
        Sample training task \(\mathcal{T}^{\text {train }}\) with primitive ids \(T_{1}=i_{1}, T_{2}=i_{2}, T_{3}=i_{3}\)
        Sample \(k\) training examples from the task \(\left\{\left(x^{j}, y^{j}\right)_{j=1, \cdots, k}\right\} \sim \mathcal{T}^{\text {train }}\)
        Pretend one of the primitives (chosen at random) is unknown, say \(T_{2}\)
        Initialize \(z=0, \Delta \theta^{\prime}=0\)
        while loss improves and max iterations not reached do
            \(z \leftarrow z-\nabla_{z} \sum_{j=1}^{k}-\log p\left(y^{j} \mid x^{j}, z_{1}=\theta_{e}\left[i_{1}\right], z_{2}=z, z_{3}=\theta_{e}\left[i_{3}\right] ; \theta^{\prime}\right)\)
                \(\Delta \theta^{\prime} \leftarrow \Delta \theta^{\prime}-\nabla_{\theta^{\prime}} \sum_{j=1}^{k}-\log p\left(y^{j} \mid x^{j}, z_{1}=\theta_{e}\left[i_{1}\right], z_{2}=z, z_{3}=\theta_{e}\left[i_{3}\right] ; \theta^{\prime}\right)\)
        \(\theta^{\prime} \leftarrow \theta^{\prime}+\Delta \theta^{\prime}\)
    until max training iterations;
```


D Model Architecture

Figure 2 shows an illustration of how we use transformers for sequence classification (left) and sequence transduction (right) problems. In the classification setting the input is a sequence ($x_{1} \cdots x_{n}$) and the output is a discrete label y. In the transduction setting, the input $\left(x_{1} \cdots x_{n}\right)$ and output $\left(y_{1} \cdots y_{m}\right)$ are sequences. z is an embedding vector we refer to as the task embedding and appears in the input to the transformer, in addition to the input sequence. The task embedding z is task specific, and is inferred on the fly for each task during training. Learning a new task \mathcal{T} at test time involves inferring the corresponding task embedding $z_{\mathcal{T}}$, leaving the rest of the model parameters untouched.

Figure 2: Illustration of how we use transformers for sequence classification (left) and sequence transduction (right) problems.

