
A Derivations

Theorem 1. The weight matrices W and C used to compute VS Meta RNNs from Equation 3 (left

side) can be expressed as a standard recurrent neural network with weight matrix W̃ (right side).

sabj �(b̂j +
X

i

sabiWij +
X

c,i

scaiCij

| {z }
interactions

) = �(b̂j +
X

c,d,i

scdiW̃cdiabj

| {z }
sparse-shared equivalent

) (3 revisited)

The weight matrix W̃ has zero entries and shared entries given by Equation 4.

W̃cdiabj =

8
>><

>>:

Cij , if d = a ^ (d 6= b _ c 6= a).
Wij , if d 6= a ^ d = b ^ c = a.

Cij +Wij , if d = a ^ d = b ^ c = a.

0, otherwise.

(4 revisited)

Proof. We rearrange W̃ into two separate weight matrices
X

c,d,i

scdiW̃cdiabj (15)

=
X

c,d,i

scdiAcdiabj +
X

c,d,i

scdi(W̃ �A)cdiabj . (16)

Then assuming Acdiabj = (d ⌘ b)(c ⌘ a)Wij , where x ⌘ y equals 1 iff x and y are equal and 0
otherwise, it holds that X

c,d,i

scdiAcdiabj =
X

i

sabiWij . (17)

Further, assuming (W̃ �A)cdiabj = (d ⌘ a)Cij we yield
X

c,d,i

scdi(W̃ �A)cdiabj =
X

c,i

scaiCij . (18)

Finally, solving both conditions for W̃ gives

W̃cdiabj = (d ⌘ a)Cij + (d ⌘ b)(c ⌘ a)Wij , (19)

which we rewrite in tabular notation:

W̃cdiabj =

8
>><

>>:

Cij , if d = a ^ (d 6= b _ c 6= a).
Wij , if d 6= a ^ d = b ^ c = a.

Cij +Wij , if d = a ^ d = b ^ c = a.

0, otherwise.

(20)

Thus, Equation 3 holds and any weight matrices W and C can be expressed by a single weight matrix
W̃ .

B Alternative neural forward computation

Bounded states in LSTMs In Section 4 we noted that in LSTMs h is bounded between (�1, 1).
This means that with standard tanh neural forward computation tanh(x)w + b both w and b would be
limited to magnitude 1. This can be circumvented by choosing a large magnitude, here 20, by which
we scale our training target Equation 13 while scaling down w and b in the LSTM.

LSTM states and LSTM inputs. In Section 4, h1 denoted the part of the state that corresponds to
the ‘neuron’ input. In practice, we make all interaction term outputs including h1 an LSTM input,
meaning the value is only determined by the interaction term and not the standard dynamics of the
LSTM itself. This does not affect the generality of the derived VS Meta RNNs but simplifies learning.

11

Parameter Value

LSTM cell size 32
Learning rate 5 · 10�3

Batch size 32, 768
Iterations 106

Random data std 2
Gradient update target norm 10�3

Optimizer Adam
Loss Smooth L1

Table 1: Hyper-parameters for learning neural
forward computation and backprop cloning

Parameter Value

Batch size 64
Optimizer CMA-ES
Iterations 200
Inner steps 104

Initial noise std 0.1

Table 2: Hyper-parameters for meta learning
to improve backpropagation

C Other training details

Source code Source code will be made available with the publication of this work.

Batching for VS Meta RNNs backpropagation experiments In Section 3.1 we optimize a VS
Meta RNN to implement backpropagation. To stabilize learning at meta-test time we run the RNN on
multiple data points (batch size 64) and then average their states as an analog to batching in standard
gradient descent. In our meta learning from scratch experiments, we did not use this technique which
allows for a greatly increased sample efficiency during learning.

Stability during meta-testing In order to prevent exploding states during meta-testing we also
clip the LSTM state between �4 and 4.

Stacking VS Meta RNNs In order to get a similar effect to non-recurrent deep feed-forward
architectures, one can stack multiple VS Meta RNNs where their states VL are untied and their
parameters VM are tied.

How input data is fed and output is read In our presented experiments we match the axis A to
the input datum dimensionality such that for each dimension ī we set sīb1 = xī for any b. Similarly,
we read the output from saj̄1 for each output dimension j̄. Alternatively, multiple input or output
dimensions could be bundled together which we will investigate in the future.

Specialization through RNN coordinates In addition to the recurrent inputs and inputs from the
interaction term, each sub-RNN can be fed its coordinates a, b, position in time, or position in the
layer stack. This may allow for specialization, akin to the specialization of biological neurons. In our
experiments, we have not yet observed any benefits of this approach and leave this to future work.

D Additional related work

Meta learning has been used to find optimizers that update the parameters of a model by taking the loss
and gradient with respect to these parameters as an input [Ravi and Larochelle, 2016, Andrychowicz
et al., 2016, Li and Malik, 2016, 2017]. In this work, we are interested in meta learning that does not
rely on fixed gradient calculation in the inner loop.

An interesting alternative to distributed variable updates in VS Meta RNNs is meta-learning via
discrete program search [Schmidhuber, 1994, Real et al., 2020]. In this paradigm, a separate
programming language needs to be defined that gives rise to neural computation when its instructions
are combined. Compared to our work, this assumes global memory and modifications of the program
are usually highly non-smooth making optimization expensive.

In the reinforcement learning setting multiple agents can be modeled with shared parameters [Pathak
et al., 2019, Rosa et al., 2019, Huang et al., 2020]. This is related to the variable sharing in VS Meta
RNNs depending on how the agent-environment boundary is drawn. Different from these works we

12

avoid the complexity of multiple agents. Furthermore, we demonstrate the advantage of variable
sharing in meta-learning general-purpose learning algorithms.

E Visualizations of VS Meta RNNs

1,1

1,2

2,1

2,2

(a) Connectivity

t t + 1

1,1

1,2

2,1

2,2

(b) C unrolled

Neuron Neuron Neuron

Neuron Neuron Neuron

1,1

1,2

2,1

2,2

(c) Neural interpretation

Figure 7: The connectivity of VS Meta RNNs gives rise to a neural interpretation (all figures show
the same computation): (a) shows N = 4 states s duplicated 4 times (A = 2, B = 2) with blue
coloring for W and red / orange for interactions C, we have dropped the full connectivity of V for
readability (4 connections instead of 16); (b) we unrolled the recurrence in C across two time steps;
(c) intermediate computation results are drawn in gray circles which are then added to different state
clusters (gray arrows). These intermediate results can be interpreted as multi-dimensional neurons
while C describes synaptic connectivity and (a subset of) s defines the synaptic weight / state.

13

	Introduction
	Background
	Variable Shared Meta Learning (VS-ML)
	Learning to implement backpropagation in recurrent dynamics
	Meta Learning general learning algorithms from scratch

	Experiments
	Conclusion
	Derivations
	Alternative neural forward computation
	Other training details
	Additional related work
	Visualizations of VS Meta RNNs

