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Abstract

Learned optimizers are algorithms that can themselves be trained to solve optimiza-
tion problems. In contrast to baseline optimizers (such as momentum or Adam)
that use simple update rules derived from theoretical principles, learned optimizers
use flexible, high-dimensional, nonlinear parameterizations. Although this can lead
to better performance in certain settings, their inner workings remain a mystery.
How is a learned optimizer able to outperform a well tuned baseline? Has it learned
a sophisticated combination of existing optimization techniques, or is it implement-
ing completely new behavior? In this work, we address these questions by careful
analysis and visualization of learned optimizers. We study learned optimizers
trained from scratch on three disparate tasks, and discover that they have learned
interpretable mechanisms, including: momentum, gradient clipping, learning rate
schedules, and a new form of learning rate adaptation. Moreover, we show how the
dynamics of learned optimizers enables these behaviors. Our results help elucidate
the previously murky understanding of how learned optimizers work, and establish
tools for interpreting future learned optimizers.

1 Introduction

Optimization algorithms underlie nearly all of modern machine learning. A recent thread of research
is focused on learning optimization algorithms, by directly parameterizing and training an optimizer
on a distribution of tasks. These so-called learned optimizers have been shown to outperform baseline
optimizers in restricted settings (Andrychowicz et al., 2016; Wichrowska et al., 2017; Lv et al., 2017;
Bello et al., 2017; Li & Malik, 2016; Metz et al., 2019, 2020).

Despite improvements in the design, training, and performance of learned optimizers, fundamental
questions remain about their behavior. We understand remarkably little about how these systems
work. Are learned optimizers simply learning a clever combination of known techniques? Or do they
learn fundamentally new behaviors that have not yet been proposed in the optimization literature? If
they did learn a new optimization technique, how would we know?

Contrast this with existing “hand-designed” optimizers such as momentum (Polyak, 1964), AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), or Adam (Kingma & Ba, 2014). These
algorithms are motivated and analyzed via intuitive mechanisms and theoretical principles (such as
accumulating update velocity in momentum, or rescaling updates based on gradient magnitudes in
RMSProp or Adam). This understanding of underlying mechanisms allows future studies to build
on these techniques by highlighting flaws in their operation (Loshchilov & Hutter, 2018), studying
convergence (Reddi et al., 2019), and developing deeper knowledge about why key mechanisms work
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(Zhang et al., 2020). Without analogous understanding of the inner workings of a learned optimizers,
it is incredibly difficult to analyze or synthesize their behavior.

In this work, we develop tools for isolating and elucidating mechanisms in nonlinear, high-
dimensional learned optimization algorithms (§3). Using these methods we show how learned
optimizers utilize both known and novel techniques, across three disparate tasks. In particular, we
demonstrate that learned optimizers learn momentum (§4.1), gradient clipping (§A), learning rate
schedules (§4.2), and a new type of learning rate adaptation (§4.3). Taken together, our work can
be seen as part of a new approach to scientifically interpret and understand learned algorithms. We
provide code for training and analyzing learned optimizers, as well as the trained weights for the
learned optimizers studied here, at https://bit.ly/3eqgNrH.

2 Background and related work

We are interested in optimization problems that minimize a loss function (f ) over parameters (x).
We focus on first-order optimizers, which at iteration k have access to the gradient gki ≡ ∇f(xki ) and
produce an update ∆xki . These are component-wise optimizers that are applied to each parameter
or component (xi) of the problem in parallel. Standard optimizers used in machine learning (e.g.
momentum, Adam) are in this category1. Going forward, we use x for the parameter to optimize, g
for its gradient, k for the current iteration, and drop the parameter index (i) to reduce excess notation.

An optimizer has two parts: the optimizer state (h) that stores information about the current problem,
and readout weights (w) that update parameters given the current state. The optimization algorithm
is specified by the initial state, the state transition dynamics, and readout, defined as follows:

hk+1 = F (hk, gk) (1)

xk+1 = xk + wThk+1, (2)

where h is the optimizer state, F governs the optimizer state dynamics, and w are the readout
weights. Learned optimizers are constructed by parameterizing the function F , and then learning
those parameters along with the readout weights through meta-optimization (detailed in Appendix
D.2). Hand-designed optimization algorithms, by distinction, specify these functions at the outset.

For example, in momentum, the state is a scalar (known as the velocity) that accumulates a weighted
average of recent gradients. For momentum and other hand-designed optimizers, the state variables
are low-dimensional, and their dynamics are straightforward. In contrast, learned optimizers have
high-dimensional state variables, and the potential for rich, nonlinear dynamics. As these systems
learn complex behaviors, it has historically been difficult to extract simple, intuitive descriptions of
the behavior of a learned optimizer.

Our work is heavily inspired by recent work using neural networks to parameterize optimizers.
Andrychowicz et al. (2016) originally showed promising results on this front, with additional studies
improving robustness (Wichrowska et al., 2017; Lv et al., 2017), meta-training (Metz et al., 2019),
and generalization (Metz et al., 2020) of learned optimizers.

We also build on recent work on reverse engineering dynamical systems. Sussillo & Barak (2013)
showed how linear approximations to nonlinear dynamical systems can yield insight into the algo-
rithms used by these networks. More recently, these techniques have been applied to understand
trained RNNs in a variety of domains, from natural langauge processing (Maheswaranathan et al.,
2019a; Maheswaranathan & Sussillo, 2020) to neuroscience (Schaeffer et al., 2020). Additional work
on treating RNNs as dynamical systems has led to insights into their computational capabilities (Jor-
dan et al., 2019; Krishnamurthy et al., 2020; Can et al., 2020).
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Figure 1: Learned optimizers outperform well tuned baselines on three different tasks: (a) linear
regression, (b) the Rosenbrock function, and (c) training a neural network on the two moons dataset.
Upper row: Task schematics (described in §4). Bottom row: Optimizer performance, shown as loss
curves (mean ± std. error over 128 random seeds) for different optimizers: momentum (orange),
RMSProp (yellow), Adam (red) and a learned optimizer (blue).

3 Methods

3.1 Training learned optimizers

We parametrize the learned optimizer with a recurrent neural network (RNN), similar to Andrychowicz
et al. (2016). Specifically, we use a gated recurrent unit (GRU) (Cho et al., 2014) with 256 units2.
The only input to the optimizer is the gradient. The RNN is trained by minimizing a meta-objective,
which we define as the average training loss when optimizing a target problem. See Appendix D.2
for details about the optimizer architecture and meta-training procedures.

We trained these learned optimizers on each of three tasks. These tasks were selected because they
are fast to train (particularly important for meta-optimization) and covered a range of loss surfaces
(convex and non-convex, low- and high-dimensional):

Convex, quadratic: The first task consists of random linear regression problems f(x) = 1
2‖Ax−

b‖22, where A and b are randomly sampled. Much of our theoretical understanding of the behavior of
optimization algorithms is derived using quadratic functions, in part because they have a constant
Hessian (ATA) over the entire parameter space. The choice of how to sample the problem data A
and b will generate a particular distribution of Hessians and condition numbers. The distribution of
condition numbers for our task distribution is shown in Figure 1a.

Non-convex, low-dimensional: The second task is minimizing the Rosenbrock function (Rosen-
brock, 1960), a commonly used test function for optimization. It is a non-convex function which
contains a curved valley and a single global minimum. The function is defined over two parameters
(x and y) as f(x, y) = (1− x)2 + 100(y − x2)2. The distribution of problems for this task consists
of the same loss function with different initializations sampled uniformly over a grid. The rosenbrock
loss surface is shown in Figure 1b, on a log scale to highlight the curved valley. The grid used
to sample initializations is the same as the grid shown in the figure; the x-coordinate is sampled
uniformly from (-2, 2) and the y-coordinate is sampled uniformly from (-1, 3).

Non-convex, high-dimensional: The third task involves training a neural network to classify a toy
dataset, the two moons dataset (Figure 1c). As the data are not linearly separable, a nonlinear classifier
is required to solve the task. The optimization problem is to train the weights of a three hidden layer
fully connected neural network, with 64 units per layer and tanh nonlinearities. The distribution of
problems involves sampling the initial weights of the network.

1Notable exceptions include quasi-Newton methods such as L-BFGS (Nocedal & Wright, 2006) or K-
FAC (Martens & Grosse, 2015).

2We see similar mechanisms and behaviors in GRU optimizers with 64 and 128 units.
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On each task, we additionally tuned three baseline optimizers (momentum, RMSProp, and Adam).
We selected the hyperparameters for each problem out of 2500 samples randomly drawn from a grid.
Details about the exact grid ranges used for each task are in Appendix D.3.

Figure 1 (bottom row) compares the performance of the learned optimizer (blue) to baseline optimizers
(red, yellow, and orange), on each of the three tasks described above. Across all three tasks, the
learned optimizer outperforms the baseline optimizers on the meta-objective3 (Appendix Fig. 9).

3.2 Parameter update function visualizations
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Figure 2: Visualizing optimizer behavior with update functions (see §3.2 for details) for different
commonly used optimization techniques. (a) Gradient descent is a (stateless) linear function, whose
slope is the learning rate. (b) Gradient clipping saturates the update, beyond a threshold. (c)
Momentum introduces a vertical offset depending on the accumulated velocity (colors indicate
different values of the accumulated momentum). (d) RMSProp changes the slope (effective learning
rate) of the update (colors denote changes in the state variable, the accumulated squared gradient).

First, we introduce a visualization tool to get a handle on what an optimizer is doing. Any optimizer,
at a particular state, can be viewed as a scalar function that takes in a gradient (g) and returns a change
in the parameter (∆x). We refer to this as the optimizer update function. Mathematically, the update
function is computed as the the state update projected onto the readout, ∆x = wTF (h, g), following
equations (1) and (2). In addition, the slope of this function with respect to the input gradient

(
∂∆x
∂g

)
can be thought of as the effective learning rate at a particular state4. We will use both the overall
update function and the effective learning rate to understand optimizer behavior.

It is instructive to visualize these update functions for commonly used optimizers (Figure 2). For
gradient descent, the update (∆x = −αg) is stateless and is always a fixed linear function whose
slope is the learning rate, α (Fig. 2a). Gradient clipping is also stateless, but is a saturating function
of the gradient (Fig. 2b). For momentum, the update is ∆x = −α(v + βg), where v denotes the
momentum state (velocity) and β is the momentum hyperparameter. The velocity adds an offset to
the update function (Fig. 2c). For adaptive optimizers such as RMSProp, the state variable changes
the slope, or effective learning rate, within the linear region of the update function (Fig. 2d). As the
optimizer picks up positive (or negative) momentum, the curve shifts downward (or upward), thus
incorporating a bias to reduce (or increase) the parameter.

Now, what about learned optimizers, or optimizers with much more complicated or high-dimensional
state variables? One advantage of update functions is that, as scalar functions, they can be easily
visualized and compared to the known methods in Figure 2. Whether or not the underlying hidden
states are interpretable, for a given learned optimizer, remains to be seen.

3.3 A dynamical systems perspective

We study the behavior of optimizers by treating them as dynamical systems. This perspective has
yielded a number of intuitive and theoretical insights (Su et al., 2014; Wilson et al., 2016; Shi et al.,

3As the meta-objective is the average training loss during an optimization run, it naturally penalizes the
training curve earlier in training (when loss values are large). This explains the discrepancy in the curves for
linear regression (Fig. 1a, bottom) where momentum continues to decrease the loss late in training. Despite this,
the learned optimizer has an overall smaller meta-objective due to having lower loss at earlier iterations.

4We compute this slope at g = 0. We find that the update function is always linear in the middle with
saturation at the extremes, thus the slope at zero is a good summary of the effective learning rate.
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2019). In order to understand the dynamics of a learned optimizer, we approximate the nonlinear
dynamical system via linearized approximations (Strogatz, 2018).

These linear approximations hold near fixed points of the dynamics. Fixed points are points in the
state space of the optimizer, where — as long as input gradients do not perturb it — the system does
not move. That is, an approximate fixed point h∗ satisfies the following: h∗ ≈ F (h∗, g∗), for a
particular input g∗.

We can numerically find approximate fixed points (Sussillo & Barak, 2013; Maheswaranathan et al.,
2019b), by solving an optimization problem where we find points (h) that minimize the following
loss: 1

2‖F (h, g∗) − h‖22. The solutions to this problem (there may be many) are the approximate
fixed points of the system F for a given input, g∗. There may be different fixed points for different
values of the input (g). First we will analyze fixed points when g∗ = 0 (§4.1), and then later introduce
additional behavior that occurs as g∗ varies (§4.3).

4 Results

We discovered four mechanisms in the learned optimizers responsible for their superior performance.
In the following sections, we go through each in detail, showing how it is implemented. For the
behaviors that are task dependent, we highlight how they vary across tasks.

4.1 Momentum
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Figure 3: Momentum in learned optimizers. Each column shows the same phenomena, but for
optimizers trained on different tasks. Top row: Projection of the optimizer state around a convergence
point (black square). Inset: the total variance of the optimizer states over test problems goes to zero
as the trajectories converge. Middle row: visualization of the update functions (§3.2) along the slow
mode of the dynamics (colored lines correspond to arrows in (a)). Along this dimension, the effect on
the system is to induce an offset in the update, just as in classical momentum (cf. Fig. 2c). Bottom
row: Eigenvalues of the linearized optimizer dynamics at the convergence fixed point (black square
in (a)) plotted in the complex plane. The eigenvalue magnitudes are momentum timescales, and the
color indicates the corresponding learning rate. See §4.1 for details.
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We discovered that learned optimizers implement momentum using approximate linear dynamics
(Figure 3). First, we found that each optimizer converges to a single global fixed point of the dynamics.
We can see this as the total variance of hidden states across test problems goes to zero as the optimizer
is run (inset in Fig. 3). The top row of Fig. 3 is a projection5 of the hidden state space, showing the
convergence fixed point (black square). Around this fixed point, the dynamics are organized along
a line (gray circles). Shifting the hidden state along this line (indicated by colored arrows) induces
a corresponding shift in the update function (middle row of Fig. 3), similar to what is observed in
classical momentum (cf. Fig. 2c).

At a fixed point, we can linearly approximate the nonlinear dynamics of the optimizer using the
Jacobian of the state update. This Jacobian is a matrix with N eigenvalues and eigenvectors. Writing
the update in these coordinates allows us to rewrite the learned optimizer as a momentum algorithm
(see Appendix C), albeit with N timescales instead of just one. The magnitude of the eigenvalues
are exactly momentum timescales, each with a corresponding learning rate. Note that this type of
optimizer has been previously proposed as aggregated momentum by Lucas et al. (2018).

We find that learned optimizers use a single mode to implement momentum. The bottom row of
Fig. 3 shows the eigenvalues (computed at the convergence fixed point) in the complex plane, colored
by that mode’s learning rate (see Appendix C for how these quantities are computed). This reveals a
single dominant eigenmode (colored in purple), whose eigenvector corresponds to the momentum
direction and whose eigenvalue is the corresponding momentum timescale.

While we analyze the best performing learned optimizers in the main text, we did find a learned
optimizer on the linear regression task that had slightly worse performance but strongly resembled
classical momentum; in fact, this optimizer recovered the optimal momentum parameters for the par-
ticular task distribution. We analyze this optimizer in Appendix B as it is instructive for understanding
the momentum mechanism.

4.2 Learning rate schedules
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Figure 4: Learning rate schedules mediated by autonomous dynamics. Top row: Low-dimensional
projection of the dynamics of the learned optimizer in response to zero gradients (no input). These
autonomous dynamics allow the system to learn a learning rate schedule (see §4.2). Bottom row:
Effective learning rate (measured as the slope of the update function) as a function of iteration during
the autonomous trajectories in the top row. We only observe a clear learning rate schedule in the
linear regression task (left column), which includes both a warm-up and decay. For context, dashed
lines indicate the best (tuned) learning rate for momentum.

5We use principal components analysis (PCA) to project the high-dimensional hidden state into 2D. Depend-
ing on the task, we found that different mechanisms would correspond to different principal components (hence
the different numbers on the x- and y- axes of the top row of Fig. 3).
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Practitioners often tune a learning rate schedule, that is, a learning rate that varies per iteration.
Originally motivated for use with stochastic gradients to guarantee convergence to a fixed point
(Robbins & Monro, 1951), schedules are now used more broadly (Schaul et al., 2013; Smith et al.,
2017; Ge et al., 2019; Choi et al., 2019). These schedules are often a decaying function of the
iteration — meaning the learning rate goes down as optimization progresses — although Goyal et al.
(2017) use an additional (increasing) warm-up period, and even more exotic schedules have also been
proposed (Loshchilov & Hutter, 2016; Smith, 2017; Li & Arora, 2019).

We discovered that learned optimizers can implement a schedule using autonomous — that is, not
input driven — dynamics. By moving the initial state (which are trainable parameters) away from
the convergence fixed point, then even in the absence of input, autonomous dynamics will encode a
particular trajectory as a function of the iteration as the system relaxes to the fixed point. Furthermore,
this autonomous trajectory evolves in a subspace orthogonal to the readout weights used to update
the parameters. This ensures that the autonomous dynamics themselves do not induce changes in the
parameters, but only change the effective learning rate.

For the linear regression task, we found a 2D subspace6 where the autonomous dynamics occur
(Figure 4), driving the system from the initial state (black circle) to the final convergence point (black
square). The shaded gray points in the top row of Fig. 4 are slow points of the dynamics (Sussillo &
Barak, 2013), which shape the trajectory.

By computing the effective learning rate (slope of the update function) of the system along the
autonomous trajectory, we can study the effect of these dynamics. We find that for the linear
regression task (left column of Fig. 4), the system has learned to initially increase the learning
rate over the course of 25 iterations, followed by a roughly linear decay. We find that the learned
optimizer trained on the other tasks does not learn to use a learning rate schedule.

4.3 Learning rate adaptation

The final mechanism we discovered is a type of learning rate adaptation. The effect of this mechanism
is to decrease the learning rate of the optimizer when large gradients are encountered, similar to
adaptive learning rate methods such as AdaGrad or RMSProp. However, the mechanism that enables
this behavior in learned optimizers is novel.

To understand how momentum is implemented by learned optimizers, we studied the linear dynamics
of the optimizer near a fixed point (§4.1). That fixed point was found numerically (§3.3) by searching
for points h∗ that satisfy h∗ ≈ F (h∗, g∗), where we hold the input (gradient) fixed at zero (g∗ = 0).
To understand learning rate adaptation, we need to study the dynamics around fixed points with
non-zero input. We find these fixed points by setting g∗ to a fixed non-zero value.

We sweep the value of g∗ over the range of gradients encountered for a particular task. For each value,
we find a single corresponding fixed point. These fixed points are arranged in an S-curve, shown in
the top row of Figure 5. The color of each point corresponds to the value of g∗ used to find that fixed
point. One arm of this curve corresponds to negative gradients (red), while the other corresponds
to positive gradients (green). The tails of the S-curve correspond to the largest magnitude gradients
encountered by the optimizer, and the central spine of the S-curve contains the final convergence
point7.

These fixed points are all attractors, meaning that if we held the gradient fixed at a particular value,
the hidden state dynamics would converge to that corresponding fixed point. In reality, the input
(gradient) to the optimizer is constantly changing, but if a large (positive or negative) gradient is seen
for a number of timesteps, the state will be attracted to the tails of the S-curve. As the gradient goes
to zero, the system converges to the final convergence point in the central spine.

What is the functional benefit of these additional dynamics? To understand this, we visualize the
update function corresponding to different points along the S-curve (middle row of Fig. 5). The
curves are shown for just one arm of the S-curve (green, corresponding to positive gradients) for
visibility, but the effect is the symmetric across the other arm as well. We see that as we move along

6We found this subspace by looking for dimensions that maximized the variation of the autonomous trajectory;
this subspace is different from the low-dimensional projection used in Figures 3 and 5.

7The top row of Figure 5 uses the same projection as the top row of Figure 3, just zoomed out.
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Figure 5: Learning rate adaptation in learned optimizers. Top row: Approximate fixed points (colored
circles) of the dynamics computed for different gradients reveal an S-curve structure. Middle row:
Update functions (§3.2) computed at different points along the S-curve (corresponding to arrows from
the top row). The effect of moving towards the edge of the S-curve is to make the update function
more shallow (thus have a smaller effective learning rate, cf. Fig. 2d). The effect is similar along both
arms; only one arm is shown for clarity. Bottom row: Summary plot showing the effective learning
rate along each arm of the S-curve, for negative (red) and positive (green) gradients. The overall
effect is to reduce learning rates when the gradient magnitude is large.

the tail of the S-curve (corresponding to large gradients) the slope of the update function becomes
more shallow, thus the effect is to decrease the effective learning rate.

The changing learning rate along both arms of the S-curve are shown in the bottom row of Fig. 5,
for positive (green) and negative (red) gradients, plotted against the magnitude of the gradient on a
log scale. This allows the system to increase its learning rate for smaller gradient magnitudes. For
context, the best tuned learning rate for classical momentum for each task is shown as a dashed line.

5 Discussion

In this work, we trained learned optimizers on three different optimization tasks, and then studied
their behavior. We discovered that learned optimizers learn a plethora of intuitive mechanisms:
momentum, gradient clipping, schedules, and learning rate adaptation. While the coarse behaviors
are qualitatively similar across different tasks, the mechanisms are tuned for particular tasks.

Previously, not much was known about how learned optimizers worked. The analysis presented here
demonstrates that learned optimizers are capable of learning a number of interesting optimization
phenomena. The methods we have developed (update functions and visualization of state dynamics)
should be part of a growing toolbox we can use to extract insight from the high-dimensional nonlinear
dynamics of learned optimizers, and meta-learned algorithms more generally.
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