
A Gradient clipping

5 0 5
Gradient (g)

20

0

20

U
pd

at
e
(

x)

Linear Regression

1000 0 1000
0.1

0.0

0.1
Rosenbrock

0.1 0.0 0.1
0.05

0.00

0.05
Neural network training

5 0 5
Gradient (g)

D
en

si
ty

(lo
g
sc
al
e)

1000 0 1000 0.05 0.00 0.05

Figure 6: Gradient clipping in a learned optimizer. Top row: The update function computed at the
initial state saturates for large gradient magnitudes. The effect of this is similar to that of gradient
clipping (cf. Fig. 2b). Bottom row: the empirical density of encountered gradients for each task
(note the different ranges along the x-axes). Depending on the problem, the learned optimizer can
tune its update function so that most gradients are in the linear portion of the function, and thus not
use gradient clipping (seen in the linear regression task, left column) or can potentially use more of
the saturating region (seen in the Rosenbrock task, middle column).

In standard gradient descent, the parameter update is a linear function of the gradient. Gradient
clipping (Pascanu et al., 2013) instead modifies the update to be a saturating function (Fig. 2b).

We find that learned optimizers also use saturating update functions as the gradient magnitude
increases, thus learning a soft form of gradient clipping (Figure 6). Although we show the saturation
for a particular optimize state (the initial state, top row of Fig. 6), we find that these saturating
thresholds are consistent throughout the state space.

The strength of the clipping effect depends on the training task. We can see this by comparing the
update function to the distribution of gradients encountered for a given task (bottom row of Fig. 6).
For some problems, such as linear regression, the learned optimizer largely stays within the linear
region of the update function (Fig. 6, left column). For others, such as the Rosenbrock problem
(Fig. 6, right column), the optimizer utilizes more of the saturating part of the update function.

B A learned optimizer that recovers momentum

When training learned optimizers on the linear regression tasks, we noticed that we could train
a learned optimizer that seemed to strongly mimic momentum, both in terms of behavior and
performance. With additional training, the learned optimizer would eventually start to outperform
momentum (Figure 1a). We highlight this latter, better performing optimizer in the main text.
However, it is still instructive to go through the analysis for the learned optimizer that mimics
momentum. This example in particular clearly demonstrates the connections between eigenvalues,
momentum, and dynamics.

The learned optimizer that performs as well as momentum learns to mimic linear dynamics (we also
used a GRU for this optimizer). That is, the dynamics of the nonlinear optimizer could be very well
approximated using a linearization computed at the convergence point. This linearization is shown in
Figure 7. We find a single mode pops out of the bulk of eigenvalues (Fig. 7a). Additionally, if we
plot these eigenvalue magnitudes, which are the momentum time scales, against the corresponding
extracted learning rate of each mode, as discussed below in Appendix C), we see that this mode
also has a large learning rate compared to the bulk (top right blue circle in Fig. 7b). Moreover, the
extracted momentum timescale and learning rate for this mode essentially exactly match the best
tuned hyperparameters (gold star in Fig. 7b) from tuning the momentum algorithm directly, which
can also be derived from theory.

12



Finally, if we extract and run just the dynamics along this particular mode, we see that it matches the
behavior of the full, nonlinear optimizer almost exactly (Fig. 7c). This suggests that in this scenario,
the learned optimizer has simply learned the single mechanism of momentum. Moreover, the learned
optimizer has encoded the best hyperparameters for this particular task distribution in its dynamics.
Our analysis shows how to separate the overall mechanism (linear dynamics along eigenmodes)
from the particular hyperparameters of that mechanism (the specific learning rate and momentum
timescale).

C Linearized optimizers and aggregated momentum

In this section, we elaborate on the connections between linearized optimizers and momentum with
multiple timescales. We begin with our definition of an optimizer, equations (1) and (2) in the main
text:

hk+1 = F (hk, gk)

xk+1 = xk + wThk+1,

where h is the optimizer state, g is the gradient, x is the parameter being optimized, and k is the
current iteration. Note that since this is a component-wise optimizer, it is applied to each parameter
(xi) of the target problem in parallel; therefore we drop the index (i) to reduce notation.

Near a fixed point of the dynamics, we approximate the recurrent dynamics with a linear approxima-
tion. The linearized state update can be expressed as:

F (hk, gk) ≈ h∗ +
∂F

∂h

(
hk − h∗) +

∂F

∂g
gk, (3)

where h∗ is a fixed point of the dynamics, ∂F
∂h is a square matrix known as the Jacobian, and ∂F

∂g is a
vector that controls how the scalar gradient enters the system. Both of these latter two quantities are
evaluated at the fixed point, h∗, and g∗ = 0.

For a linear dynamical system, as we have now, the dynamics decouple along eigenmodes of the
system. We can see this by rewriting the state in terms of the left eigenvectors of the Jacobian matrix.
Let v = UTh denote the transformed coordinates, in the left eigenvector basis U (the columns of U
are left eigenvectors of the matrix ∂F

∂h ). In terms of these coordinates, we have:

vk+1 = v∗ + B
(
vk + v∗) + agk, (4)

where B is a diagonal matrix containing the eigenvalues of the Jacobian, and a is a vector obtained
by projecting the vector that multiplies the input

(
∂F
∂g

)
from eqn. (3) onto the left eigenvector basis.

(a) Jacobian eigenvalues (b) Extracted hyperparameters (c) Extracted vs Full

Iteration (k)

Lo
ss

Figure 7: A learned optimizer that recovers momentum on the linear regression task. (a) Eigenvalues of the
Jacobian of the optimizer dynamics evaluated at the convergence fixed point. There is a single eigenmode that
has separated from the bulk. (b) Another way of visualizing eigenvalues is by translating them into optimization
parameters (learning rates and momentum timescales), as described in Appendix C. When we do this for this
particular optimizer, we see that the slow eigenvalue (momentum timescale closest to one) also has a large
learning rate. These specific hyperparameters match the best tuned momentum hyperparametrs for this task
distribution (gold star). (c) When we extract and run just the dynamics along this single mode (orange dashed
line), we see that this reduced optimizer matches the full, nonlinear optimizer (solid line) almost exactly.

13



Figure 8: Schematic of a learned optimizer.

If we have an N -dimensional state vector h, then eqn. (4) defines N independent (decoupled)
scalar equations that govern the evolution of the dynamics along each eigenvector: vk+1

j = v∗j +

βj
(
vkj + v∗j

)
+ αjg

k, where we use βj to denote the jth eigenvalue and αj is the jth component of a
in eqn. (4). Collecting constants yields the following simplified update:

vk+1
j = βjv

k
j + αjg + const., (5)

which is exactly equal to the momentum update (vk+1 = βvk + αgk), up to a (fixed) additive
constant. The main difference between momentum and the linearized momentum in eqn. (5) is that
we now have N different momentum timescales. Again these timescales are exactly the eigenvalues
of the Jacobian matrix from above. Moreover, we also have a way of extracting the corresponding
learning rate associated with eigenmode j, as αj . This particular optimizer (momentum with multiple
timescales) has been proposed under the name aggregated momentum by Lucas et al. (2018).

Taking a step back, we have drawn connections between a linearized approximation of a nonlinear
optimizer, and a form of momentum with multiple timescales. What this now allows us to do is
interpret the behavior of learned optimizers near fixed points through this new lens. In particular,
we have a way of translating the parameters of a dynamical system (Jacobians, eigenvalues and
eigenvectors) into more intuitive optimization parameters (learning rates and momentum timescales).

D Supplemental methods

D.1 Tasks for training learned optimizers

An optimization problem is specified by both the loss function to minimize and the initial parameters.
When training a learned optimizer (or tuning baseline optimizers), we sample this loss function and
initial condition from a distribution that defines a task. Then, when evaluating an optimizer, we
sample new optimization problems from this distribution to form a test set.

The idea is that the learned optimizer will discover useful strategies for optimizing the particular task
it was trained on. By studying the properties of optimizers trained across different tasks, we gain
insight into how different types of tasks influence the learned algorithms that underlie the operation
of the optimizer. This sheds insight on the inductive bias of learned optimizers; i.e. we want to know
what properties of tasks affect the resulting learned optimizer and whether those strategies are useful
across problem domains.

We train and analyzed learned optimizers on three distinct tasks. In order to train a learned optimizer,
for each task, we must repeatedly initialize and run the corresponding optimization problem (resulting
in thousands of optimization runs). Therefore we focused on simple tasks that could be optimized
within a couple hundred iterations, but still covered different types of loss surfaces: convex and non-
convex functions, over low- and high-dimensional parameter spaces. We also focused on deterministic
functions (whose gradients are not stochastic), to reduce variability when training and analyzing
optimizers.

D.2 Training a learned optimizer

We train learned optimizers that are parameterized by recurrent neural networks (RNNs). In all
of the learned optimizers presented here, we use gated recurrent unit (GRU) (Cho et al., 2014) to
parameterize the optimizer. This means that the function F in eqn. (1) is the state update function

14



of a GRU, and the optimizer state is the GRU state. In addition, for all of our experiments, we set
the readout function r in eqn. (2) to be linear. The parameters of the learned optimizer are now the
GRU parameters, and the weights of the linear readout. We meta-learn these parameters through a
meta-optimization procedure, described below.

In order to apply a learned optimizer, we sample an optimization problem from our task distribution,
and iteratively feed in the current gradient and update the problem parameters, schematized in
Figure 8. This iterative application of an optimizer builds an unrolled computational graph, where the
number of nodes in the graph is proportional to the number of iterations of optimization (known as
the length of the unroll). This is sometimes called the inner optimization loop, to contrast it with the
outer loop that is used to update the optimizer parameters.

In order to train a learned optimizer, we first need to specify a target objective to minimize. In
this work, we use the average loss over the unrolled (inner) loop as this meta-objective. In order
to minimize the meta-objective, we compute the gradient of the meta-objective with respect to the
optimizer weights. We do this by first running an unrolled computational graph, and then using
backpropagation through the unrolled graph in order to compute the meta-gradient.

This unrolled procedure is computationally expensive. In order to get a single meta-gradient, we need
to initialize, optimize, and then backpropagate back through an entire optimization problem. This is
why we focus on small optimization problems, that are fast to train.

Another known difficulty with this kind of meta-optimization arises from the unrolled inner loop.
In order to train optimizers on longer unrolled problems, previous studies have truncated this inner
computational graph, effectively only using pieces of it in order to compute meta-gradients. While
this saves computation, it is known that this induces bias in the resulting meta-gradients (Wu et al.,
2018; Metz et al., 2019).

To avoid this, we compute and backpropagate through fully unrolled inner computational graphs.
This places a limit on the number of steps that we can then run the inner optimization for, in this
work, we set this unroll length to 200 for all three tasks. Backpropagation through a single unrolled
optimization run gives us a single (stochastic) meta-gradient, when meta-training, we average these
over a batch size of 32.

Now that we have a procedure for computing meta-gradients, we can use these to iteratively update
parameters of the learned optimizer (the outer loop, also known as meta-optimization). We do this
using Adam as the meta-optimizer, with the default hyperparameters (except for the initial learning
rate, which was tuned via random search). In addition, we use gradient clipping (with a clip value
of five applied to each parameter independently and decay the learning rate exponentially (by a
factor of 0.8 every 500 steps) during meta-training. We added a small `2-regularization penalty to
the parameters of the learned optimizer, with a penalty strength of 10−5. We trained each learned
optimizer for a total of 5000 steps.

For each task, we ended up with a single (best performing) learned optimizer architecture. These
are the optimizers that we then analyzed, and form the basis of the results in the main text. The final
meta-objective for each learned optimizer and best tuned baselines are compared below in Figure 9.

D.3 Hyperparameter selection for baseline optimizers

We tuned the hyperparameters of each baseline optimizer, separately for each task. For each com-
bination of optimizer and task, we randomly sampled 2500 hyperparameter combinations from a
grid, and selected the best one using the same meta-objective that was used for training the learned
optimizer. We ensured that the best parameters did not occur along the edge of any grid.

For momentum, we tuned the learning rate (α) and momentum timescale (β). For RMSProp, we
tuned the learning rate (α) and learning rate adaptation parameter (γ). For Adam, we tuned the
learning rate (α), momentum (β1), and learning rate adaptation (β2) parameters. The result of these
hyperparameter runs are shown in Figures 10 (linear regression), 11 (Rosenbrock), and 12 (two
moons classification). In each of these figures, the color scale is the same — purple denotes the
optimal hyperparameters.

15



RM
SP

ro
p

Mo
me

ntu
m

Ad
am

Le
ar

ne
d

0

0.5

1

1.5
M

et
a-

ob
jec

tiv
e

Linear Regression

RM
SP

ro
p

Mo
me

ntu
m

Ad
am

Le
ar

ne
d

Rosenbrock

RM
SP

ro
p

Mo
me

ntu
m

Ad
am

Le
ar

ne
d

Neural network training

Figure 9: Performance summary. Each panel shows the meta-objective (average training loss) over
64 random test problems for baseline and learned optimizers. Error bars show standard error. The
learned optimizer has the lowest (best) meta-objective on each task.

Figure 10: Hyperparameter selection for linear regression.

16



Figure 11: Hyperparameter selection for Rosenbrock.

Figure 12: Hyperparameter selection for training a neural network on two moons data.

17


