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Abstract

Inverted bottleneck layers, which are built upon depthwise convolutions, have been
the predominant building blocks in state-of-the-art object detection models on mo-
bile devices. In this work, we investigate the optimality of this design pattern over
a broad range of mobile accelerators by revisiting the usefulness of regular convo-
lutions. We achieve substantial improvements in the latency-accuracy trade-off by
incorporating regular convolutions in the search space, effectively placing them
in the network via neural architecture search, and directly optimizing the network
architectures for object detection. We obtain a family of object detection models,
MobileDets, that achieve state-of-the-art results across mobile accelerators. On
the COCO object detection task, MobileDets outperform MobileNetV3+SSDLite
by 1.7 mAP at comparable mobile CPU inference latencies. MobileDets also
outperform MobileNetV2+SSDLite by 1.9 mAP on mobile CPUs, 3.7 mAP on
EdgeTPUs, 3.4 mAP on DSPs and 2.7 mAP on edge GPUs without latency in-
crease. Moreover, MobileDets are comparable with the state-of-the-art MnasFPN
on mobile CPUs even without using the feature pyramid, and achieve better mAP
scores on both EdgeTPUs and DSPs with up to 2× speedup. Code and models are
available in the TensorFlow Object Detection API [10]: https://github.com/
tensorflow/models/tree/master/research/object_detection.

1 Introduction

Neural architecture search (NAS) methods [3, 17, 16, 8, 6] have demonstrated a superior ability in
finding models that are not only accurate but also efficient on a specific hardware platform. Despite
many advancements in NAS algorithms [19, 13, 1, 12, 3, 17, 16, 8, 6], inverted bottlenecks (IBN)
[14] remain the predominant building block in state-of-the-art mobile models. IBN-only search
spaces have also been the go-to setup in majority of the related NAS publications [16, 3, 17, 8, 2].

Inverted bottleneck layers rely on large depthwise convolutions [15], which have relatively low
FLOPS and parameter counts and can be executed efficiently on CPUs. However, the advantage of
depthwise convolutions for mobile inference is less clear for hardware accelerators such as DSPs or
EdgeTPUs which are becoming increasingly popular on mobile devices. For example, for certain
tensor shapes and kernel dimensions, a regular convolution can run 3× as fast as the depthwise
variation on an EdgeTPU despite having 7× as many FLOPs. This observation leads us to question
the exclusive use of IBN-only search spaces in most current state-of-the-art mobile architectures.
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Our work seeks to rethink the use of IBN-only search space on modern mobile accelerators. To this
end, we propose the MobileDet search space family which includes not only IBNs but also flexible
full convolution sequences motivated by the structure of tensor decomposition [18, 4]. Using the
object detection task as an example (one of the most popular mobile vision applications), we show the
MobileDet search space family can enable NAS methods to identify models with substantial better
latency-accuracy trade-offs on mobile CPUs, DSPs, EdgeTPUs and edge GPUs.

Figure 1: Platform-aware NAS and our MobileDet search space work synergistically to boost object detection
performance on accelerators. SSDLite object detection performance on Pixel-4 DSPs with different backbone
designs: manually-designed MobileNetV2, searched with IBN-only search space, and searched with the proposed
MobileDet space (with both IBNs and full conv-based building blocks). Layers are visualized as vertical bars
where color indicates layer type and length indicates expansion ratio. C4 and C5 mark the feature inputs to the
SSDLite head. While conducting platform-aware NAS in an IBN-only search space achieves a 1.6 mAP boost
over the handcrafted baseline, searching within the MobileDet space brings another 1.6 mAP gain.

To evaluate our proposed MobileDet search space, we perform latency-aware NAS for object de-
tection, targeting a diverse set of mobile platforms. Experimental results show that by using our
MobileDet search space family and directly searching on detection tasks, we can consistently improve
the performance across all hardware platforms. Our searched models, MobileDets, outperform Mo-
bileNetV2 by 1.9mAP on CPU, 3.7mAP on EdgeTPU, 3.4mAP on DSP, and 2.7mAP on edge GPU
at comparable inference latencies. MobileDets also outperform the state-of-the-art MobileNetV3
classification backbone by 1.7mAP at similar CPU inference efficiency. Further, the searched models
achieved comparable performance with the state-of-the-art mobile CPU detector, MnasFPN [5],
without leveraging the NAS-FPN head which may complicate the deployment. On both EdgeTPUs
and DSPs, MobileDets are more accurate than MnasFPN while being more than twice as fast.

Our main contributions can be summarized as follows:

• Unlike many existing works which exclusively focused on IBN layers for mobile applica-
tions, we propose an augmented search space family with building blocks based on regular
convolutions. We show that NAS methods can substantially benefit from this enlarged search
space to achieve better latency-accuracy trade-off on a variety of mobile devices.

• We deliver MobileDets, a set of mobile object detection with state-of-the-art quality-latency
trade-off across CPUs, EdgeTPUs, DSPs and NVIDIA Jetson Xavier GPUs. Models have
been released to benefit a wide range of on-device object detection applications.

2 Revisiting Full Convs in Mobile Search Spaces

The layout of an Inverted Bottleneck (IBN) is illustrated in Figure 2. IBNs are designed to reduce
the number of parameters and FLOPs, and leverage the depthwise-separable kernels to achieve high
efficiency on mobile CPUs. However, not all FLOPs are the same, especially in modern mobile
accelerators such as EdgeTPU and DSPs. For example, a regular convolution may run 3× as fast
on EdgeTPUs than its depthwise variation even with 7× as many FLOPs. The observation indicates
that the widely used IBN-only search space can be suboptimal for modern mobile accelerators.
This motivated us to propose new building blocks by revisiting regular (full) convolutions to enrich
IBN-only search spaces for mobile accelerators. Specifically, we propose two flexible layers to
perform channel expansion and compression, respectively, which are detailed below.
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Figure 2: Inverted bottleneck layer: 1 × 1 pointwise convolution transforms the input channels from C1 to
s × C1 with input expansion ratio s > 1, then K ×K depthwise convolution transforms the input channels
from s× C1 to s× C1, and the last 1× 1 pointwise convolution transforms the channels from s× C1 to C2.
The highlighted C1, s,K,C2 in IBN layer are searchable.
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Figure 3: Fused inverted bottleneck layer: K ×K regular convolution transforms the input channels from C1

to s× C1 with input expansion ratio s > 1, and the last 1× 1 pointwise convolution transforms the channels
from s× C1 to C2. The highlighted C1,K, s, C2 in the fused inverted bottleneck layer are searchable.
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Figure 4: Tucker layer: 1× 1 pointwise convolution transforms the input channels C1 to s× C1 with input
compression ratio s < 1, then K ×K regular convolution transforms the input channels from s×C1 to e×C2

with output compression ratio e < 1, and the last 1× 1 pointwise convolution transforms the channels from
e× C2 to C2. The highlighted C1, s,K, e, C2 in Tucker layer are searchable.

2.1 Fused Inverted Bottleneck Layers (Expansion)

The depthwise-separable convolution [15] is a critical element of an inverted bottleneck [9] (Figure 2).
The idea behind the depthwise-separable convolution is to replace an “expensive” full convolution
with a combination of a depthwise convolution (for spatial dimension) and a 1 × 1 pointwise
convolution (for channel dimension). However, the notion of expensiveness was largely defined
based on FLOPs or the number of parameters, which are not necessarily correlated with the inference
efficiency on modern mobile accelerators. To incorporate regular convolutions, we propose to modify
an IBN layer by fusing together its first 1 × 1 convolution and its subsequent K × K depthwise
convolution into a single K ×K regular convolution (Figure 3). Like a standard inverted bottleneck
layer, the initial convolution in our fused inverted bottleneck increases the number of filters by a
factor s > 1. The expansion ratio of this layer will be determined by the NAS algorithm.

2.2 Tucker Convolution Layers (Compression)

Bottleneck layers were introduced into ResNets [7] to reduce the cost of large convolutions over
high-dimensional feature maps. A bottleneck layer with compression ratio s < 1 consists of a 1× 1
convolution with C1 input filters and s ·C1 output filters, followed by a K×K convolution with s ·C1

output filters, followed by a 1× 1 convolution with C2 output filters. We generalize these bottlenecks
(Figure 4) by allowing the initial 1× 1 convolution to potentially have a different number of output
filters than the K ×K convolution and let the NAS algorithm to decide the best configurations.

We refer to these new building blocks as Tucker convolution layers because of their connections with
Tucker decompositions. (See Supplement for details.)
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3 Experiments

We consider COCO dataset for our object detection experiments. We report mean average precision
(mAP) for object detection and the real latency of searched models on accelerators with image size
320×320. we conduct our experiments in two stages: architecture search for optimal architecture
and architecture evaluation via retraining the found architecture from scratch. We provide details for
these two steps, as well as our latency benchmark protocol in Supplement.

Search Space. The overall layout of our search space resembles that of ProxylessNAS and TuNAS.
We consider three search space variants with increasing sizes: IBN: The smallest search space that
contains IBN layers only. Each layer may choose from kernel sizes (3, 5) and expansion factors (4, 8);
IBN+Fused: An enlarged search space that not only contains all the IBN variants above, but also
Fused inverted bottleneck layers in addition with searchable kernel sizes (3, 5) and expansion factors
(4, 8); IBN+Fused+Tucker: A further enlarged search space that contains Tucker (compression)
layers in addition. Each Tucker layer allows searchable input and output compression ratios within
(0.25, 0.75). For all search spaces variants above, we also search for the output channel sizes of each
layer among the options of (0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 2.0) times a base channel size (rounded
to the multiples of 8 to be more hardware-friendly). Layers in the same block share the same base
channel size, though they can end up with different channel multipliers. The base channel sizes
for all the blocks (from stem to head) are 32-16-32-48-96-96-160-192-192. The multipliers and
base channel sizes are designed to approximately subsume several representative architectures in the
literature, such as MobileNetV2 and MnasNet.

Hardware-Specific Adaptations. The aforementioned search spaces are slightly adapted depending
on the target hardware. Specifically: 1, All building blocks are augmented with Squeeze-and-
Excitation blocks and h-Swish activation functions (to replace ReLU-6) when targeting at CPUs.
This is necessary for fair comparison with the MobileNetV3+SSDLite baseline. Both primitives are
not well supported on EdgeTPUs or DSPs; 2, We exclude 5×5 convolutions from the search space
when targeting at DSPs, which are known to be highly inefficient due to hardware constraints.

3.1 Search Space Ablation

With a perfect architecture search algorithm, the largest search space is guaranteed to outperform the
smaller ones because it subsumes the solutions of the latter. This is not necessarily the case in practice,
however, as the algorithm may end up with sub-optimal solutions especially when the search space is
large [5]. A search space is considered useful if it enables NAS methods to identify sufficiently good
architectures even if they are not optimal. In the following, we evaluate the usefulness of different
search spaces by pairing them with TuNAS [2], a scalable latency-aware NAS implementation.
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Figure 5: NAS results on Pixel-1 CPU using different search space variants.

CPU. Figure 5 shows the NAS results for Pixel-1 CPUs. As expected, MobileNetV3+SSDLite
is a strong baseline as the efficiency of its backbone has been heavily optimized for the same
hardware platform over the classification task on ImageNet. We also note that the presence of regular
convolutions does not offer clear advantages in this particular case, as IBN-only is already strong
under FLOPs/CPU latency. Nevertheless, conducting domain-specific architecture search w.r.t. the
object detection task offers non-trivial gains on COCO (+1mAP in the range of 150-200ms).
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Figure 6: NAS results on Pixel-4 EdgeTPU using different search space variants.

EdgeTPU. Figure 6 shows the architecture search results when targeting at Pixel-4 EdgeTPUs. Con-
ducting hardware-aware architecture search with any of the three search spaces significantly improves
the overall quality. This is largely due the the fact that the baseline architecture (MobileNetV2)2 is
heavily optimized towards CPU latency, which is strongly correlated with FLOPs/MAdds but not
well calibrated with the EdgeTPU latency. Notably, while IBN-only still offers the best accuracy-
MAdds trade-off (middle plot), having regular convolutions in the search space (either IBN+Fused
or IBN+Fused+Tucker) offers clear further advantages in terms of accuracy-latency trade-off. The
results demonstrate the usefulness of full convolutions on EdgeTPUs.

 21

 22

 23

 24

 25

 26

 27

 28

 29

 9  10  11  12  13  14  15

C
O

C
O

 V
a
lid

 m
A

P
 (

%
)

DSP Latency (ms)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

C
O

C
O

 V
a
lid

 m
A

P
 (

%
)

MAdds (B)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 3  4  5  6  7  8  9  10  11  12

C
O

C
O

 V
a
lid

 m
A

P
 (

%
)

Params (M)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

Figure 7: NAS results on Pixel-4 DSP using different search space variants.

DSP. Figure 7 shows the search results when targeting at Pixel-4 DSPs. Similar to EdgeTPUs, it
is evident that the inclusion of regular convolutions in the search space leads to substantial mAP
improvement under comparable inference latency.

3.2 Main Results

We compare our architectures obtained via latency-aware NAS against state-of-the-arts mobile
detection models on COCO [11]. For each target hardware platform, we report results obtained
by searching over each of the three search space variants. Results are presented in Table 1. On
CPUs, we find that searching directly on a detection task allows us to improve mAP by 1.7mAP over
MobileNetV3, but do not find evidence that our proposed fused IBNs and Tucker bottlenecks are
required to obtain high quality models. On DSPs and EdgeTPUs, however, we find that our new
primitives allow us to significantly improve the tradeoff between model speed and accuracy.

On mobile CPUs, MobileDet outperforms MobileNetV3+SSDLite [8], a strong baseline based on
the state-of-the-art image classification backbone, by 1.7 mAP at comparable latency. The result
confirms the effectiveness of detection-specific NAS. The models also achieved competitive results
with MnasFPN, the state-of-the-art detector for mobile CPUs, without leveraging the NAS-FPN head
which may complicate the deployment process. It is also interesting to note that the incorporation

2MobileNetV3 is not well supported on EdgeTPUs due to h-swish and squeeze-and-excite blocks.
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Model/Search Space Target mAP (%) Latency (ms) MAdds Params
hardware Valid Test CPU EdgeTPU DSP (B) (M)

MobileNetV2♦‡ – 22.1 162 8.4 11.3 0.80 4.3
MobileNetV2 (ours)♦ 22.2 21.8 129 6.5 9.2 0.62 3.17
MobileNetV2 × 1.5 (ours)♦ 25.7 25.3 225 9.0 12.1 1.37 6.35
MobileNetV3†‡ – 22.0 119 ∗ ∗ 0.51 3.22
MobileNetV3 (ours)† 22.2 21.8 108 ∗ ∗ 0.46 4.03
MobileNetV3 × 1.2 (ours)† 23.6 23.1 138 ∗ ∗ 0.65 5.58
MnasFPN (ours)C 25.6 26.1 185 18.5 25.1 0.92 2.50
MnasFPN (ours)× 0.7C 24.3 23.8 120 16.4 23.4 0.53 1.29

IBN+Fused+Tucker†
CPU

24.2 23.7 122 ∗ ∗ 0.51 3.85
IBN+Fused† 23.0 22.7 107 ∗ ∗ 0.39 3.57
IBN† 23.9 23.4 113 ∗ ∗ 0.45 4.21

IBN+Fused+Tucker
EdgeTPU

25.7 25.5 248 6.9 10.8 1.53 4.20
IBN+Fused 26.0 25.4 272 6.8 9.9 1.76 4.79
IBN 25.1 24.7 185 7.4 10.4 0.97 4.17

IBN+Fused+Tucker♦
DSP

28.9 28.5 420 8.6 12.3 2.82 7.16
IBN+Fused♦ 29.1 28.5 469 8.6 11.9 3.22 9.15
IBN♦ 27.3 26.9 259 8.7 12.2 1.43 4.85

Table 1: Main results. Test AP scores are based on COCO test-dev. †: Augmented with Squeeze-Excite and
h-Swish (CPU-only); ∗: Not well supported by the hardware platform; ♦: 3×3 kernel size only (DSP-friendly);
C: Augmented with NAS-FPN head; ‡: Endpoint C4 located after the 1×1 expansion in IBN.

Model mAP (%) Jetson Xavier
Valid Test FP16 Latency (ms)

MobileNetV2 (ours) 22.2 21.8 2.6
MobileNetV2 × 1.5 (ours) 25.7 25.3 3.4

Searched (IBN+Fused+Tucker) 27.6 28.0 3.2
Table 2: Generalization of the MobileDet search space to NVIDIA Jetson GPUs. We follow the DSP
setup in Table 1, except that the number of filters are rounded to the multiples of 16.

of full convolutions is quality-neutral over mobile CPUs, indicating that IBNs are indeed promising
building blocks for this particular hardware platform.

On EdgeTPUs, MobileDet outperforms MobileNetV2+SSDLite by 3.7 mAP on COCO test-dev at
comparable latency. We attribute the gains to both task-specific search (wrt COCO and EdgeTPU) and
the presence of full convolutions. Specifically, IBN+Fused+Tucker leads to 0.8 mAP improvement
together with 7% latency reduction as compared to the IBN-only search space.

On DSPs, MobileDet achieves 28.5 mAP on COCO with 12.3 ms latency, outperforming Mo-
bileNetV2+SSDLite (×1.5) by 3.2 mAP at comparable latencies. The same model also outperforms
MnasFPN by 2.4 mAP with more than 2× more speed-up. Again it is worth noticing that including
full convolutions in the search space clearly improved the architecture search results from 26.9 mAP
@ 12.2 ms to 28.5 mAP @ 11.9ms. One interesting observation is that MobileDets use regular
convolutions extensively on EdgeTPU and DSP, especially in the early stage of the network where
depthwise convolutions tend to be less efficient. The results confirm that IBN-only search space
is not optimal for these accelerators. Visualization of our searched object detection architectures,
MobileDets, by targeting at different mobile hardware platforms using our largest search space can
be seen in Supplement.

Generalization to New Hardware The proposed search space family (IBN+Fused+Tucker) was
specifically developed wrt CPUs, EdgeTPUs and DSPs. It remains an interesting question whether
the search space can extrapolate to new hardware. To answer this, we provide architecture search
results wrt NVIDIA Jetson GPUs (as a “holdout” device) in Table 2. The searched model within our
expanded search space achieves +3.7mAP boost over MobileNetV2 while being faster. The results
confirm that the proposed search space family is generic enough to handle a new hardware platform.
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4 Conclusion

In this work, we question the predominant design pattern of using depthwise inverted bottlenecks
as the only building block for computer vision models on the edge. Using the object detection
task as a case study, we revisit the usefulness of regular convolutions over a variety of mobile
accelerators, including mobile CPUs, EdgeTPUs and DSPs. Our results reveal that full convolutions
can substantially improve the accuracy-latency trade-off on several accelerators when placed at the
right positions in the network, which can be efficiently identified via neural architecture search. The
resulting architectures, MobileDets, achieve superior detection results over a variety of hardware
platforms, significantly outperforming the prior state-of-the-art by a large margin.
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