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1 Summary

This is the supplementary material for our submission. In this document, we describe further details
of the connections with Tucker/CP decomposition, and experimental results.

1.1 Connections with Tucker/CP decomposition

The two proposed layer varients can be linked to Tucker/CP decomposition. Fig. 1 shows the
graphical structure of an inverted bottleneck with input expansion ratio s, modulo nonlinearities. This
structure is equivalent to the sequential structure of approximate evaluation of a regular convolution
by using CP decomposition [4]. The Tucker convolution layer with input and output compression
ratios s and e, denoted as Tucker layer shown in Fig. 3, has the same structure (modulo nonlinearities)
as the Tucker decomposition approximation of a regular convolution [3]. Fused inverted bottleneck
layer with an input expansion ratio s, shown in Fig. 2, can also be considered as a variant of the
Tucker decomposition approximation.
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Figure 1: Inverted bottleneck layer: 1 × 1 pointwise convolution transforms the input channels from C1 to
s × C1 with input expansion ratio s > 1, then K ×K depthwise convolution transforms the input channels
from s× C1 to s× C1, and the last 1× 1 pointwise convolution transforms the channels from s× C1 to C2.
The highlighted C1, s,K,C2 in IBN layer are searchable.

1.2 Experimental Setup

Architecture Search. Our proposed search spaces are complementary to any neural architecture
search algorithms. We employ TuNAS [1] for its scalability and its reliable improvement over random
baselines. To avoid overfitting the true validation dataset, we split out 10% of the COCO training data
to evaluate the models and compute rewards during search. Hyperparameters for training the shared
weights follow those in standalone training. As for reinforcement learning, we use Adam optimizer
with an initial learning rate of 5× 10−3, β = (0, 0.999) and ε = 10−8. We search for 50K steps to
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Figure 2: Fused inverted bottleneck layer: K ×K regular convolution transforms the input channels from C1

to s× C1 with input expansion ratio s > 1, and the last 1× 1 pointwise convolution transforms the channels
from s× C1 to C2. The highlighted C1,K, s, C2 in the fused inverted bottleneck layer are searchable.
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Figure 3: Tucker layer: 1× 1 pointwise convolution transforms the input channels C1 to s× C1 with input
compression ratio s < 1, then K ×K regular convolution transforms the input channels from s×C1 to e×C2

with output compression ratio e < 1, and the last 1× 1 pointwise convolution transforms the channels from
e× C2 to C2. The highlighted C1, s,K, e, C2 in Tucker layer are searchable.

obtain the architectures in ablation studies and search for 100K steps to obtain the best candidates in
the main results table.

Architecture Evaluation via Retraining. The training is carried out over 32 synchronized replicas
on a 4x4 TPU-v2 pod. For fair comparison with existing models, we use standard preprocessing
in Tensorflow object detection API without additional enhancements such as drop-block or auto-
augment. We use SGD with momentum 0.9 and weight decay 5× 10−4. The learning rate is warmed
up in the first 2000 steps and then follows cosine decay. The training setting is the same between our
searched model and baselines for fair comparison and all models are trained from scratch without any
ImageNet pre-trained checkpoint. We consider two different training schedules: (a) Short-schedule:
Each model is trained for 50K steps with a batch size of 1024 and an initial learning rate of 4.0; (b)
Long-schedule: Each model is trained for 400K steps with a batch size of 512 and an initial learning
rate of 0.8. The short schedule is about 4× as fast as the long schedule but would result in slightly
inferior quality. Unless otherwise specified, we use the short schedule for ablation studies and the
long schedule for the final results.

Latency Benchmarking. The simulated latencies are obtained using lookup tables similar to those
used by NetAdapt [5]. We report on-device latencies for all of our main results. We benchmark using
TF-Lite for CPU, EdgeTPU and DSP, relying on NNAPI to delegate computations to accelerators.
All benchmarks use single-thread and a batch size of 1. In Pixel 1 CPU, we use only a single large
core. For Pixel 4 EdgeTPU and DSP, the models are fake-quantized [2] as required. The GPU models
are optimized and benchmarked using TensorRT 7.1 converted from an intermediate ONNX format.

1.3 Transferability of Models across Hardware
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Figure 4: Transferability of architectures (searched wrt different target platforms) across hardware platforms.
For each architecture, we report both the original model and its scaled version with channel multiplier 1.5×.
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Finally, we investigate the transferability of the architectures across hardware platforms. Fig. 4
compares MobileDets (obtaind by targeting at different accelerators) wrt different hardware platforms.
Our results indicate that architectures searched on EdgeTPUs and DSPs are mutually transferable.
In fact, both searched architectures extensively leveraged regular convolutions. On the other hand,
architectures specialized wrt EdgeTPUs or DSPs (which tend to be FLOPs-intensive) do not transfer
well to mobile CPUs.

1.4 Architecture Visualizations

Fig. 5 visualizes our searched object detection architectures, MobileDets, by targeting at CPU, Ed-
geTPU, and DSP, using our TDB search space. We observe that MobileDets use regular convolutions
extensively on EdgeTPU and DSP, especially in the early stage of the network where depthwise
convolutions tend to be less efficient. These results demonstrate that IBN-only search space is not
optimal for these mobile accelerators.

Target: Pixel-1 CPU
(23.7 mAP @ 122 ms)

Target: Pixel-4 EdgeTPU
(25.5 mAP @ 6.8 ms)

Target: Pixel-4 DSP (28.5
mAP @ 12.3 ms)

Figure 5: Best architectures searched in the IBN+Fused+Tucker space wrt different mobile accelera-
tors. Endpoints C4 and C5 are consumed by the SSD head.
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