
miniImageNet
method 5-shot val 5-shot test

Soft Assignment 79.11± 0.27 77.16± 0.10
k-NN 75.82± 0.21 73.52± 0.12

1-NN centroid 80.61± 0.20 78.30± 0.14

CIFAR-FS
Soft Assignment 76.12± 0.32 83.31± 0.37

k-NN 73.46± 0.39 80.94± 0.38
1-NN centroid 77.80± 0.35 85.13± 0.32

Table 2: Comparison between the different evaluation methods discussed in Sec. 3.4

A Appendix

A.1 Performance improvements

Adapting to the support set. Prototypical Networks does not perform any kind of parameter
adaptation at test time. On the one hand this is convenient, as it allows fast inference; on the other
hand, useful information from the support set S might remain unexploited.

In the 5-shot case it is possible to minimise the NCA loss since it can directly be computed on the
support set: LNCA(S). We tried training a positive semi-definite matrix A on the outputs of the
trained neural network, which corresponds to learning a Mahalanobis distance metric as in Gold-
berger et al. (2005). However, we found that there was no meaningful increase in performance.
Differently, we did find that fine-tuning the whole neural network fθ by arg minθ LNCA(S) was
beneficial (see Table 3). However, given the computational cost, we opted for non performing adap-
tation to the support sets in our experiments of Sec. 4.

Features concatenation. For NCA, we also found that concatenating the output of intermediate
layers modestly improves performance at (almost) no additional cost. We used the output of the
average pool layers from all ResNet blocks except the first and we refer to this variant as NCA
multi-layer. However, since this is an orthogonal variation that can be applied to several methods,
we do not consider it for our experiments of Sec. 4.

Results on miniImageNet an CIFAR-FS are shown in Table 3.

A.2 Details about the ablation studies of Section 4.3

Referring to the three key differences between the Prototypical Networks and the NCA losses listed
in Sec. 3.3, in this section we detail how to obtain the ablations we used to perform the experiments
of Sec. 4.3.

We can “disable” the creation of prototypes (point 1), which will change the prototypical loss of
Eq. 2 to

L(S,Q) = − 1

|Q|+ |S|
∑

(qi,y)∈Q

log


∑

(sj ,y′)∈Sy

exp−‖qi − sj‖2∑
(sk,y′′)∈S

exp−‖qi − sk‖2

 . (4)

This is similar to LNCA (Eq. 3), where the positives are represented by the distances from Q to Sk,
and the negatives by the distances from Q to S \ Sk. The only difference now is the separation of
the batch into a query and support set.

Independently, we can “disable” point 2, which gives us

L(S,Q) = − 1

|Q|+ |S|
∑

(zi,yi)∈Q∪C

log



∑
(zj ,yj)∈Q∪C

yj=yi
i 6=j

exp−‖zi − zj‖2

∑
(zk,yk)∈Q∪C

k 6=i

exp−‖zi − zk‖2

 , (5)
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miniImageNet CIFAR-FS

method 1-shot 5-shot 1-shot 5-shot

NCA 62.52± 0.24 78.3± 0.14 72.48± 0.40 85.13± 0.29
NCA multi-layer 63.21± 0.08 79.27± 0.08 72.44± 0.36 85.42± 0.29

NCA (ours) multi-layer + ss - 79.79± 0.08 - 85.66± 0.32

Table 3: Comparison between vanilla NCA, NCA using multiple evaluation layers and NCA performing
optimisation on the support set (ss). The NCA can only be optimised in the 5-shot case, since there are not
enough positives distances in the 1-shot case. Support set is optimised for 5 epochs using Adam with learning
rate 0.0001 and weight decay 0.0005. For details, see Sec. A.1

which essentially combines the prototypes with the query set, and computes the NCA loss on that
total set of embeddings.

Finally, we can “disable” both point 1 and 2, which gives us

L(S,Q) = − 1

|Q|+ |S|
∑

(zi,yi)∈Q∪S

log



∑
(zj ,yj)∈Q∪S

yj=yi
i6=j

exp−‖zi − zj‖2

∑
(zk,yk)∈Q∪S

k 6=i

exp−‖zi − zk‖2

 . (6)

This almost exactly corresponds to the NCA loss, where the only difference is the construction of
batches with a fixed number of classes and a fixed number of images per class.

A.3 Differences between the NCA and contrastive losses

Eq. 3 is similar to the contrastive loss functions (Khosla et al., 2020; Chen et al., 2020a) that are
used in self-supervised learning and representation learning. The main differences are that 1.) In
contrastive losses, the denominator only contains negative pairs and 2.) the inner sum in the nu-
merator is moved outside of the logarithm in the supervised contrastive loss function from Khosla
et al. (2020). We opted to work with the NCA loss because we found it performs better than the
supervised constrastive loss in a few-shot learning setting. Using the supervised contrastive loss we
only managed to obtain 51.05% 1-shot and 63.36% 5-shot performance on the miniImagenet test
set.

A.4 Implementation details

Benchmarks. In our experiments, we use three popular FSL benchmarks. miniImageNet (Vinyals
et al., 2016) is a subset of ImageNet generated by randomly sampling 100 classes, each with 600 ran-
domly sampled images. We adopt the commonly used splits of Ravi & Larochelle (2017) who use
64 classes for meta-training, 16 for meta-validation and 20 for meta-testing. CIFAR-FS was pro-
posed by Bertinetto et al. (2019) as an anagolous version of miniImagenet for CIFAR-100. It uses the
same sized splits and same number of images per split as miniImageNet. tieredImageNet (Ren et al.,
2018) is also constructed from ImageNet, but contains 608 classes, with 351 training classes, 97 val-
idation classes and 160 test classes. The class split have been generated using WordNet (Miller,
1995) to ensure that the training classes are semantically “distant” to the validation and test classes.
For all datasets, we use images of size 84×84.

Architecture. In all our experiments, fθ is represented by a ResNet12 with widths
[64, 160, 320, 640]. We chose this architecture, initially introduced by Lee et al. (2019), as it is
the one which is most frequently adopted by recent FSL methods. Unlike most methods, we do not
use a DropBlock regulariser (Ghiasi et al., 2018), as we did not notice it to meaningfully contribute
to performance.

Optimisation. To train all the models used for our experiments, unless differently specified, we
used a SGD optimiser with Nesterov momentum, weight decay of 0.0005 and initial learning rate of
0.1. For miniImageNet and CIFAR-FS we decrease the learning rate by a factor of 10 after 70% of
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miniImageNet CIFAR-FS

method 1-shot 5-shot 1-shot 5-shot

PNS (SimpleShot) 57.99± 0.21 74.33± 0.16 53.76± 0.22 68.54± 0.19
PNS (ours) 62.79± 0.12 78.82± 0.09 59.60± 0.13 74.64± 0.11

NCA (SimpleShot) 61.21± 0.22 76.39± 0.16 59.41± 0.24 73.29± 0.19
NCA (ours) 64.94± 0.13 80.12± 0.09 62.07± 0.14 76.26± 0.10

Table 4: Comparison of results on validation set of miniImageNet and CIFAR-FS using the hyperparameters
used in SimpleShot(Wang et al., 2019) and the hyperparameters used in this paper (ours). Results are on batch
size 256 (as used in Wang et al. (2019)) with the PNS episodic batch being a=16, as it is the best performing
episodic setup we found.

epochs have been trained, and train for a total of 120 epochs. As data augmentations, we use random
horizontal flipping and centre cropping.

Only for the experiments of Sec. 4.4, we slightly change our training setup. On CIFAR-FS, we
increase the number of training epochs from 120 to 240, which improved accuracy of about 0.5%.
For tieredImageNet, we train for 120 epochs and decrease the learning rate by a factor of 10 after
50% and 75% of the training progress. For tieredImageNet only we increased the batch size to
1024, as we found it being beneficial. For the other datasets it did not improve performance. These
changes affect all our methods and baselines: NCA, Prototypical Networks (with both old and new
batch setup), and SimpleShot (Wang et al., 2019).

Projection network. Similarly to (Khosla et al., 2020; Chen et al., 2020a), we also experimented
(for both PNS and NCA) with a projection network (but only for the comparison of Sec. 4.4). The
projection network is a single linear layer A ∈ RM×P that is placed on top of fθ at training time,
whereM is the output dimension of the neural network fθ and P is the output dimension ofA, which
can be considered as a hyper-parameter. The output of A is only used during training. At test time,
we do not use the output of A and directly use the output of fθ. For CIFAR-FS and tieredImageNet,
we found this did not help performance. For miniImageNet however we found that this improved
performance, and we set P = 128 (which worked best for both PNS and NCA). Note that this
is not an unfair advantage over other methods. Compared to SimpleShot (Wang et al., 2019) and
other simple baselines, we actually use fewer parameters without the projection network (effectively
making our ResNet12 a ResNet11) since they use an extra fully connected layer to minimise cross
entropy during pre-training.

A.5 Choice of hyper-parameters

During the experimental design, we wanted to ensure a fair comparison between the NCA and PNs.
As a testimony of this effort, we obtained very competitive results for PNs (see for example the
comparison to recent papers where architectures of similar capacity were used (Wang et al., 2019;
Chen et al., 2019)). In particular:

• We always use the normalisation strategy of Wang et al. (2019), as it is beneficial also for
PNs.

• Unless expressively specified, we always used PNs 5-shot model, which in our implemen-
tation outperforms the 1-shot model (for both 1-shot and 5-shot evaluation). Instead, (Snell
et al., 2017) train and tests with the same number of shots.

• Apart from the episodes hyper-parameters of PNs, which we did search and optimise over
to create the plots of Fig. 2, the only other hyper-parameters of PNs are those related to the
training schedule, which are the same as the NCA. To set them, we started from the simple
SGD schedule used by Wang et al. (2019) and only marginally modified it by increasing the
number of training epochs to 120, increasing the batch size to 512 and setting weight decay
and learning rate to 5e−4 and 0.1, respectively. As a sanity check, we trained both the NCA
and PNs with the exact training schedule used by Wang et al. (2019). Results are reported
in Table 4, and show that the schedule we used for this paper is considerably better for
both PNs and NCA. In general, we observed that the modifications were beneficial for both
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Figure 5: 1-shot (left) and 5-shot accuracies (right) on the validation set of miniImageNet for different batch
sizes. Models are trained using NCA or Proto-nets with different configurations: 1-shot with a = 8 and 5-shot
with a = 8, 16 or 32. Reported values correspond to the mean accuracy of five models trained with different
random seeds. Please see Sec. 4.2 for details.

60% 62% 64% 66%

Matching-nets 5-shot (5)
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Figure 6: Ablation experiments on NCA and Matching Networks, both on batches or episodes of size 256 on
the validation set of miniImageNet and CIFAR-FS. All methods use soft assignment (Sec. 3.4) at test time.

NCA and PNs, and improvements in performance in NCA and PNs were highly correlated.
This is to be expected given the high similarity between the two methods and losses.

A.6 Additional results for Sec. 4.2

Fig. 5 complements the results of Fig. 2 from Sec. 4.2

A.7 Additional results for Sec. 4.3

Matching Networks (Vinyals et al., 2016) are closely related to PNs (Snell et al., 2017), and even
equivalent in the 1-shot case. The difference is in the use of the support set in the multi-shot case.
Whereas PNs generate prototypes by averaging the embedding of the support set, Matching Net-
works adopt a weighted nearest-neighbour approach using an attention mechanism. If the attention
mechanism is a softmax over the distances (which the authors suggest in Sec. 2.1.1 of their paper),
we obtain the soft-assignment approach discussed in Sec. 3.4 of this paper. The only two differences
between Matching Networks with a softmax attention mechanism and PNs are the lack of protoypes
and the use of the cosine distance, instead of the Euclidean distance (Snell et al. (2017) has shown
that the Euclidean distance is a better choice in FSL).

Given this similarity, and because of the relevance Matching Networks has in the few-shot learning
community, we repeated the ablation experiment of Fig. 4. The results can be found in Table 6.
In particular, we perform experiments on Matching Networks (without a Full Context Embedding)
using the softmax attention mechanism, and using a Euclidean distance metric instead of a cosine
distance metric. At training time, Matching Networks corresponds to the “no prototype” method
in row 6 of Fig. 4. Therefore, the only difference between Matching Networks and NCA during
training is the separation between the support and query set, leaving us with only one ablation to
perform. At test time, evaluating Matching Networks is equivalent to using the soft-assignment
approach described in Sec. 3.4. Therefore, for a fair comparison, for both NCA and “NCA fixed-
batch composition” methods we also use the soft-assignment evaluation at test time.
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Figure 7: Ablation experiments on NCA and Prototypical Networks, both on batches or episodes of size 128
on the validation set of miniImageNet and CIFAR-FS. Please refer to Sec. 4.3 for details.
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Figure 8: Ablation experiments on NCA and Prototypical Networks, both on batches or episodes of size 512
on the validation set of miniImageNet and CIFAR-FS. Please refer to Sec. 4.3 for details.

As we can see, disregarding the separation between the support and query set also improves the
performance of Matching Networks, and significantly so. This corroborates the findings of Sec. 4.3:
the separation of roles between images in the support and query sets, typical of episodic learning,
is detrimental to the performance of not only PN, but also Matching Networks. Instead, using the
(closely related) NCA on standard random mini-batches allows for better exploitation of the training
data, while simultaneously simplifying the training procedure.

Ablation experiments for different batch sizes. We repeated the ablation experiments done for
batch size 256 (Fig. 4) also for size 128 and 512. Results can be found in Fig. 7 and Fig. 8. As we
can see, the overall trend is maintained. A difference is the meaningful gap in performance between
row 1 and 3 in Fig. 7 (size 128), which disappers in Fig. 8 (batch 512).

This is likely due to the number of positives available in an excessively small batch size. Since our
vanilla NCA relies on using distance pairs and creates batches by simply sampling images randomly
from the dataset, there is a limit to how small a batch can be (which depends on the number of classes
of the dataset). As an example, consider the extreme case of a batch of size 4. For the datasets
considered, it is very likely that such a batch will contain no positive pairs. For a batch size of 128
and a training set of 64 classes, with a parameter-free sampler the NCA will have in expectation only
one positive pair per class. Conversely, the NCA ablation with a fixed batch composition (i.e. with a
set number of images per class) will have a higher number of positive pairs (at the cost of a reduced
number of classes per batch). We believe this can explain the difference, as positive pairs constitute
a less frequent (and potentially more informative) training signal. For the sake of simplicity, and
since this only affects smaller batch sizes, we opted to use a vanilla, parameter-free sampler for the
NCA in the rest of our experiments. Notice that, for batch size 512, there is even a slight (0.2%)
decrease in performance using the fixed-batch composition w.r.t. the vanilla NCA.

A.8 Details about number of pairs description of Section 3.3

In this section we demonstrate that the total number of training pairs that NCA can exploit within
a batch is always strictly superior than the one exploited by the episodic batch strategy used by
Prototypical Networks.

To ensure we have a “valid” episodic batch with a nonzero number of both positive and negative
distance pairs, we assume that n,m ≥ 1, and w ≥ 2.

Below, we show that the number of positives for NCA, i.e.
(
m+n

2

)
w, is always greater or equal than

the one for PNs, which is mnw:
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rank method # pos # neg # total pairs
1 NCA 1792 129024 130816
2 5-shot a=16 1760 54560 56320
3 5-shot a=8 960 60480 61440
4 5-shot a=32 2160 32400 34560
5 1-shot a=8 448 28224 28672

Table 5: Number of positives and negatives used in the batch size 512 experiments of Fig. 2.

(
m+ n

2

)
w =

(m+ n)!

2!(m+ n− 2)!
w

=
1

2
(m+ n)(m+ n− 1)w

=
1

2
(m2 + 2mn−m+ n2 − n)w

=
1

2
(m(m− 1) + 2mn+ n(n− 1))w

≥ 1

2
(2mn)w = wmn.

Similarly, we can show for negative distance pairs that
(
w
2

)
(m+ n)2 > w(w − 1)mn:

(
w

2

)
(m+ n)2 =

w!

2!(w − 2)!
(m2 + 2mn+ n2)

=
1

2
w(w − 1)(m2 + 2mn+ n2)

>
1

2
w(w − 1)(2mn)

= w(w − 1)mn.

This means that the NCA has at least the same number of positives as Prototypical Networks, and
always has strictly more negative distances.

The total number of extra pairs that NCA can rely on is w
2 (w(m2 + n2)−m− n).

A.9 Details about number of pairs description of Section 4.2

In Table 5 we plot the number of positives and negatives (gradients contributing to the loss) for the
NCA and different episodic configurations of PNs, to see whether the difference in performance can
be explained by the difference in the number of distance pairs that can be exploited in a certain batch
configuration. This is often true, as the ranking can almost be fully explained by the number of total
pairs in the right column. However, there are two exceptions to this: 5-shot with a=16 and 5-shot
with a=8.

To understand this, we can see that the number of positive pairs is much higher for a=16 than for a=8.
Since the positive pairs constitute a less frequent (and potentially more informative) training signal,
this can explain the difference. The a=32 variant has an even higher number of positives than a=16,
but the loss in performance there could be explained by a drastically lower number of negatives,
and by the fact that the number of ways used during training is lower. So, while indeed generally
speaking the higher number of pairs the better (which is also corroborated by Fig. 3, where moving
right on the x-axis sees higher performance for both NCA and PNs), one should also consider how
this interacts with the positive/negative balance and the number of classes present within a batch.

A.10 Comparison with the state-of-the-art

We now benchmark our models on three FSL datasets, with the purpose of contextualising their
performance against the modern literature.
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miniImageNet CIFAR-FS

1-shot 5-shot 1-shot 5-shot
Episodic methods
adaResNet (Munkhdalai et al., 2018) 56.88± 0.62 71.94± 0.57 - -
TADAM(Oreshkin et al., 2018) 58.50± 0.30 76.70± 0.30 - -
Shot-Free (Ravichandran et al., 2019) 60.71± n/a 77.64± n/a 69.2± n/a 84.7± n/a
TEAM (Qiao et al., 2019) 60.07± n/a 75.90± n/a - -
MTL (Sun et al., 2019) 61.20± 1.80 75.50± 0.80 - -
TapNet (Yoon et al., 2019) 61.65± 0.15 76.36± 0.10 - -
MetaOptNet-SVM(Lee et al., 2019) 62.64± 0.61 78.63± 0.46 72.0 ± 0.7 84.2± 0.5
Variatonal FSL (Zhang et al., 2019) 61.23± 0.26 77.69± 0.17 - -
Simple baselines
Transductive finetuning (Dhillon et al., 2020) 62.35± 0.66 74.53± 0.54 70.76± 0.74 81.56± 0.53
RFIC-simple (Tian et al., 2020) 62.02± 0.63 79.64 ± 0.44 71.5± 0.8 86.0± 0.5
Meta-Baseline (Chen et al., 2020b) 63.17 ± 0.23 79.26± 0.17 - -

Our implementations:

Proto-nets (Snell et al. (2017) setup) 59.93± 0.23 75.89± 0.16 70.20± 0.22 83.96± 0.16
Proto-nets (our setup) 61.32± 0.23 77.77± 0.15 70.41± 0.31 84.46± 0.29
SimpleShot (Wang et al., 2019) 62.16± 0.23 78.33± 0.17 70.01± 0.21 84.50± 0.11
NCA (ours) 62.52± 0.24 78.3± 0.14 72.48 ± 0.40 85.13 ± 0.29

Table 6: Comparison of methods that use ResNet12 on miniImageNet and CIFAR-FS (test set).

tieredImageNet
Method 1-shot 5-shot

Shot-Free (Ravichandran et al., 2019) 63.52± n/a 82.59± n/a
RFIC-simple (Tian et al., 2020) 69.74± 0.72 84.41± 0.55

Meta-Baseline (Chen et al., 2020b) 68.62± 0.27 83.29± 0.18
MetaOptNet-SVM(Lee et al., 2019) 65.99± 0.72 81.56± 0.53

Our implementations:

Proto-nets (Snell et al. (2017) setup) 65.45± 0.23 81.14± 0.17
SimpleShot (Wang et al., 2019) 66.17± 0.15 80.64± 0.20

NCA (ours) 68.36± 0.11 83.20± 0.18

Table 7: Comparison of methods that use ResNet12 on tieredImageNet (test set).

When considering which methods to compare against, we chose those a) which have been recently
published, b) that are using a ResNet12 (which we found the most commonly used) and c) with a
setup that is not significantly more complicated than ours. For example, we only report the results of
the main approach proposed by Tian et al. (2020) and not their sequential self-distillation (Furlanello
et al., 2018) variant, which requires re-training multiple times and can be applied to most methods.

Results can be found in Table 6 for miniImageNet and CIFAR-FS and Table 7 for tieredImageNet.
In Table 6 we report Prototypical Networks results for both the episodic setup from Snell et al.
(2017) and the best one (batch size 512, 5-shot, a=16) found from the experiment of Fig. 2, which
brings a considerable improvement over the original. We did not optimised for a new setup for Pro-
totypical Networks on tieredImageNet, as the larger dataset and the higher number of classes would
have made the hyper-parameter search too demanding. Notice how our vanilla NCA is competi-
tive or superior to recent methods, despite being extremely simple. It fairs surprisingly well against
methods that use meta-learning (and episodic learning), and also against the high-performing simple
baselines based on pre-training with the cross-entropy loss.
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