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Abstract

As autonomous decision-making agents move from narrow operating environ-
ments to unstructured worlds, learning systems must move from a closed-world
formulation to an open-world, lifelong, few-shot setting in which agents con-
tinuously learn new classes from small amounts of information. This stands in
stark contrast to modern machine learning systems that are typically designed
with a known set of classes and a large number of examples for each class.
In this work we extend embedding-based few-shot learning algorithms toward
open-world problems. We combine Bayesian non-parametric class priors with an
embedding-based pre-training scheme to yield a highly flexible framework for use
in both the lifelong and the incremental settings. We benchmark our framework on
miniImageNet and TieredImageNet in the lifelong setting. Our results show, com-
pared to prior methods, up to a 14% classification accuracy improvement from our
novel pretraining scheme and up to a 22% improvement in AUROC (a measure of
novel class detection) from our non-parametric few-shot learning scheme.

1 Introduction

The standard setting for classification systems is closed-world: a fixed set of possible labels is spec-
ified during training over large datasets, and this set remains fixed during deployment [18]. This
closed-world approach stands in stark contrast with human learning. By continually integrating
novel information, we continually learn new labels from small amounts of new data. As autonomous
decision-making agents move from highly structured operating environments to unstructured ones,
learning systems must consider open-world, few-shot, and lifelong settings in which agents contin-
uous learn new labels from limited amounts of new information in the wild.
In this work, we present a novel approach to classification in this open setting. We focus on the
open-world, few-shot lifelong learning setting, in which the set of test and train classes are disjoint.
This setting is foundational for related settings, such as incremental learning (in which the test and
train classes may overlap), and we believe progress in this setting may accelerate progress in all
types of open-world learning.
Our approach combines ideas from Bayesian non-parametrics [14] with a Bayesian formulation of
prototypical few-shot learning to yield a highly flexible and simple non-parametric model capable
of reflecting uncertainty in whether a class is novel. In particular, we leverage a Chinese restaurant
process (CRP) class prior—a prior on an unbounded number of classes [7]—along with a Bayesian
embedding-based meta-learning algorithm [8]. To improve the performance of this framework, we
present an embedding-based pre-training phase in which a standard fully-connected classification
head is replaced with Gaussian class distributions in feature space for pre-training. Together, these
components enable efficient and effective lifelong learning.
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(a) L-PCOC Prediction (b) New Class Instantiation (c) In-Distribution Update

Figure 1: A 2D visualization of L-PCOC decision boundaries and adaptation. The shared prior and its decision
boundary corresponding to a novel class are depicted in gray. The class posterior predictive distributions and
their associated decision boundaries are colored blue, green and red. Each circle depicts the 2� confidence
interval of an isotropic Gaussian. The black “X” denotes a query feature vector. In this case (fig.1a), L-PCOC
classifies the query as a novel class, however, it is close to the decision boundary. L-PCOC will then receive
the true class label. If the label corresponds to a novel class (fig.1b), L-PCOC will instantiate a new class
distribution from the shared prior and condition on the query feature (shown in red). In the case that label
corresponds to the green class (fig.1c), L-PCOC will update the green class posterior predictive to extend the
decision boundary to include the query.

Contributions. There are three core contributions in this paper.
• We propose a formalization of open-world, few-shot lifelong learning, in which decision-

making agents must detect novel classes and then rapidly adapt and generalize given limited
labeled data.

• We introduce a Bayesian few-shot learning scheme based on Gaussian embeddings [25].
We combine this approach with a Bayesian non-parametric class prior, and show this sys-
tem is capable of effectively incorporating novel classes for few-shot, open-world, lifelong
learning. Moreover, we show that this scheme results in a substantial 22% improvement
(AUROC) in the detection of novel classes compared to baseline methods.

• We introduce an embedding-based pre-training phase, linking the pre-training to the meta-
training phase. We show that this pre-training improves performance by as much as 14%
relative to standard pre-training with a fully-connected classification head. Improvement
is observed for all methods evaluated, including the baselines. We further show this
embedding-based pre-training, when combined with our lifelong learning scheme, leads
to a conceptually simple scheme for incremental learning, in which training classes appear
at test time.

2 Problem Statement

In this work, we aim to develop a classification model that is able to detect novel classes during
deployment. Moreover, the model must be able to incorporate a small number of examples of a
novel class to rapidly improve performance. In particular, we aim to develop a model capable
of open-world, few-shot learning in the lifelong setting. Because the terminology in continuous,
lifelong, and incremental learning is often ambiguous and contradictory [17], we highlight precisely
what we mean with these descriptors. In particular, our model must be able to perform on three
characteristics of real-world classification problems,

• Open-world: The set of labels is not known to the learning agent during training. Thus,
the agent must be able to detect when an input corresponds to a never-before-seen label.

• Few-shot: When the label for a new class is observed, the learning agent must be able to
rapidly learn to identify this class based on a small number of examples.

• Lifelong learning: at deployment, the agent starts with no knowledge of the space of pos-
sible labels and must learn all class labels.

Formally, we consider a setting in which we are provided a labeled dataset consisting of Ntrain
classes. We wish to deploy the model in a setting in which there are Ntest classes, with no overlap
between the train classes and the test classes. We assume that during deployment, classes are sam-
pled i.i.d. and images of the corresponding class are presented to the agent. The agent returns a
probabilistic belief that the image corresponds to a previously observed class or that the image be-
longs to a class that has not been previously observed. For accuracy evaluation purposes, we equate
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Table 1: MiniImageNet - Open-World Few-Shot Lifelong Results

Method Pre-Training Acc. (%) Support Acc. (%) Inc. Acc. (%) AUROC (%)
NCM Sup-FC 33.35 36.68 26.68 43.28
NCM Sup-E 42.71 49.60 28.94 31.65

ProtoNet Sup-FC 34.40 39.92 23.34 41.91
ProtoNet Sup-E 37.78 43.68 25.97 43.87

L-PCOC (Ours) Sup-FC 38.98 46.17 24.61 67.31
L-PCOC (Ours) Sup-E 41.77 49.54 26.21 69.19

correctly predicting a class has not previously been observed to a “correct” prediction. After making
a prediction, the agent is provided with the label.

3 Approach

The lifelong PCOC (L-PCOC) approach relies on Bayesian Gaussian Discriminant Analysis (GDA)
in the embedding space of an encoding network. This may be seen as augmenting the approach of
prototypical networks [25] with a prior over embeddings. Lifelong learning is enabled using this
prior; the “correct” label for a novel class is that corresponding to the prior. Once a new class is
observed, the posterior is computed using the shared prior over embeddings. As a prior over classes,
we use the Chinese restaurant process [7], which has seen previous application in incremental and
lifelong variations of meta-learning [13, 19] and is a flexible approach to clustering with an unknown
number of classes.
Our approach relies on three phases. We first pre-train the encoder, which has been shown to sub-
stantially improve performance of meta-learners in the few-shot setting [3, 26]. The second phase
consists of a meta-training phase, either in the lifelong setting or the incremental setting. The third
phase is a test-time fine-tuning of our encoder. This section provides a brief overview of each phase;
details are available in the appendix.

Pre-Training. Supervised pre-training has been shown to improve the generalization performance
of few-shot learning methods in the closed-world setting [3, 26]. We adapt this methodology to pre-
train an encoder and learn Gaussian class embeddings that allow for efficient initialization of PCOC
in the lifelong and incremental settings. We assume a uniform distribution over classes and directly
learn a set of Gaussian embeddings using a large-scale training set in a standard supervised-learning
setting. The mean and covariance of each class embedding are learnable parameters, however, the
covariance is constrained as isotropic. Inference is still performed via Bayesian GDA. The class
embeddings are regularized by a Gaussian prior on the mean and an inverse Wishart prior on the
covariance.

Meta-Learning. In the meta-learning phase we assume a small support set consisting of Ntrain
classes. Starting with no instantiated classes, we compute the posterior embedding for each class
based on the support set. Then, we sample a query set of Ntest > Ntrain classes, where all classes
not included in the support set are given the same “novel class” label. The loss is computed using
this query set, and backpropagated through the conditioning to train the embedding statistics and the
encoder.

Fine-Tuning. In the testing (or deployment) phase, we assume an additional support set is pro-
vided. We use this support set to fine tune the encoder to this novel class. We emphasize that this is
a simple approach to combining methods from continual learning with our framework, and further
investigation to combining meta-learning and continual learning methods is necessary. We fine-tune
strictly the last layer of the encoder network, as other fine-tuning appoaches were unstable in our
experiments. While the set of Gaussian embeddings is closed under changes to the linear last layer
of the network, we restrict our embeddings to isotropic Gaussians. Thus, the last layer fine-tuning
may be seen as re-scaling encoder features to yield class embeddings better captured by the isotropic
distributions.

4 Experiments

We evaluate our proposed method using the MiniImageNet [22] and TieredImageNet [24] datasets.
A Conv-4 network architecture [28] is used for MiniImageNet experiments and a larger scale
Resnet18 [10] network architecture is used for the TieredImageNet experiments. Please refer to
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Table 2: TieredImageNet - Open-World Few-Shot Lifelong Results

Method Pre-Training Acc. (%) Support Acc. (%) Inc. Acc. (%) AUROC (%)
NCM Sup-FC 39.76 43.44 32.28 50.64
NCM Sup-E 50.97 57.36 38.19 49.22

ProtoNet Sup-FC 46.09 53.47 33.50 48.47
ProtoNet Sup-E 51.19 57.34 38.89 49.70

L-PCOC (Ours) Sup-FC 49.61 55.50 37.82 71.83
L-PCOC (Ours) Sup-E 51.55 57.64 39.36 72.44

Table 3: MiniImageNet - Open-World Few-Shot Incremental Results

Method Pre-Training Acc. (%) Support Acc. (%) Inc. Acc. (%) AUROC (%)
NCM Sup-E 32.66 33.99 15.60 57.16

ProtoNet Sup-E 30.65 32.36 10.18 60.25
I-PCOC (Ours) Sup-E 30.85 31.78 18.84 84.75

Section A.3 of the Appendix for additional implementation detail and the task sampling procedure
for the lifelong and incremental settings.
Model performance is primarily measured via overall classification accuracy and novel class de-
tection AUROC. We further decompose overall accuracy into support classification accuracy and
incremental classification accuracy which provide metrics to understand the ability of the model to
adapt quickly to novel classes. While AUROC is a less common metric relative to accuracy, we
emphasize that it is of critical importance, as detection of novel classes often has important ramifi-
cations for ensuring safe operation.
Baselines. The performance of our method is compared with respect to Nearest Class Mean (NCM)
and ProtoNet baselines. NCM has shown strong baseline performance in the closed-world few-
shot setting [29, 3] where it performs top-1 nearest-neighbors classification in feature space via
Euclidean distance. We adapt the NCM baseline for use in the open-world setting by thresholding the
classification with a tunable minimum distance. The ProtoNet baseline follows the implementation
proposed by [25]. It is similarly adapted for novel class detection via a tuned threshold. At test time,
the class means are updated after each observed label. In the incremental setting, the train set is
encoded to generate class means for each train class.
Results. We present the lifelong results on the MiniImageNet and TieredImageNet datasets in Tables
1 and 2. We observe a strict improvement in classification performance when initializing the encoder
weights, for all three methods, with our supervised embedding pre-training scheme. An important
feature of the L-PCOC algorithm is that it allows for end-to-end training in the lifelong-learning
setting. Unlike NCM and ProtoNet, L-PCOC does not depend on non-differentiable thresholding
to detect novel classes. The model can therefore learn to calibrate given the significant imbalance
between novel class and in-distribution data. L-PCOC significantly outperforms the baselines when
detecting novel classes on both datasets (as measured by AUROC).
We present the incremental results in Table 3. We observe that there is a significant AUROC increase
across all algorithms, when compared to the lifelong setting. There is also a larger gap in classifi-
cation accuracy between the support and incremental classes than the lifelong setting. This can be
attributed to the fact that the models have access to a large-scale dataset for the support classes.
From our experiments, we observe that the embedding-based pre-training substantially improves
classification accuracy and L-PCOC/I-PCOC results in substantially improved AUROC without de-
grading classification accuracy. Thus, the combination of embedding-based pre-training and L-
PCOC/I-PCOC results in a robust model with balanced performance across all metrics necessary for
deployment in the lifelong and incremental learning settings.

5 Conclusions

In this work, we motivate the need to reformulate learning systems from a closed-world setting to
an open-world, lifelong and few-shot setting. We present a framework which combines a Chinese
restaurant process class prior, a Bayesian non-parametric class prior and a supervised embedding
pre-training scheme which can be flexibly applied to both the incremental and lifelong settings. The
framework outperforms baselines on miniImageNet and TieredImageNet and demonstrates signifi-
cant capability of detecting and quickly learning novel classes given few labels.
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