
A Datasets

We use MNIST [16], EMNIST [6], KMNIST and Kuzushiji-49 [5], CIFAR-10 and CIFAR-100 [13],
and CUB [34] datasets. Example images are shown in Figure 4. MNIST includes images of 70000
handwritten digits that belong into 10 classes. EMNIST dataset includes various characters, but we
choose EMNIST letters split that includes only letters. Lowercase and uppercase letters are combined
together into 26 balanced classes (145600 examples in total). KMNIST (Kuzushiji-MNIST) is a
dataset that includes images of 10 classes of cursive Japanese (Kuzushiji) characters and is of the
same size as MNIST. Kuzushiji-49 is a larger version of KMNIST with 270912 examples and 49
classes. CIFAR-10 includes 60000 colour images of various general objects, for example airplanes,
frogs or ships. As the name indicates, there are 10 classes. CIFAR-100 is like CIFAR-100, but has
100 classes with 600 images for each of them. Every class belongs to one of 20 superclasses which
represent more general concepts. CUB includes colour images of 200 bird species. The number of
images is small, only 11788. All datasets except Kuzushiji-49 are balanced or almost balanced.

MNIST

EMNIST

Kuzushiji

CIFAR-10

CUB

Figure 4: Example images from the different datasets that we use.

B Analysis of simple one-layer case

In this section we analyse how synthetic labels are meta-learned in the case of a simple one-layer
model with sigmoid output layer σ, second-order approach and binary classification problem. We
will consider one example at a time for simplicity. The model has weights θ and gives prediction
ŷ = σ(θTx) for input image x with true label y. We use binary cross-entropy loss L:

L (ŷ, y) = −y log ŷ − (1− y) log (1− ŷ) .

As part of the algorithm, we first update the base model, using the current base example and synthetic
label:

θ′ = θ − α∇θL
(
σ(θT x̃), ỹ

)
,

after which we update the synthetic label:

ỹ ← ỹ − β∇ỹL
(
σ(θ′Tx), y

)
.

Notation: x̃ is the base example, ỹ is the synthetic label, α is the inner-loop learning rate, β is the
outer-loop learning rate, x is an example from the target set, y is the label of the example and θ
describes the model weights.
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Our goal is to intuitively interpret the update of the synthetic label, which uses the gradient
∇ỹL

(
σ(θ′Tx), y

)
. We will repeatedly use the chain rule and the fact that

∂σ(x)

∂x
= σ(x) (1− σ(x)) .

Moreover, we will use the following result (for binary cross-entropy loss L introduced earlier):

∂L
(
σ(θTx), y

)
∂θ

=
∂L
(
σ(θTx), y

)
∂σ(θTx)

∂σ(θTx)

∂θ

=
(
σ(θTx)− y

)
x

Now we derive an intuitive formula for the gradient used for updating the synthetic label:

∂L
(
σ(θ′Tx), y

)
∂ỹ

=
∂L (ŷ′, y)

∂ỹ
=

(
∂L (ŷ′, y)

∂ŷ′
∂ŷ′

∂θ′

)T
∂θ′

∂ỹ

=

(
∂L (ŷ′, y)

∂ŷ′
∂ŷ′

∂θ′

)T ∂
(
θ − α∇θL

(
σ(θT x̃), ỹ

))
∂ỹ

=

(
∂L (ŷ′, y)

∂ŷ′
∂ŷ′

∂θ′

)T ∂
(
θ − α

(
σ(θT x̃)− ỹ

)
x̃
)

∂ỹ

=

(
∂L (ŷ′, y)

∂ŷ′
∂ŷ′

∂θ′

)T

(αx̃) = ((ŷ′ − y)x)T (αx̃)

= α
(
σ(θ′Tx)− y

)
xT x̃

The next step is to interpret the update rule. The update is proportional to the difference between
the prediction on the real training set and the true label

(
σ(θ′Tx)− y

)
as well as to the similarity

between the real training set example and the base example
(
xT x̃

)
. This suggests the synthetic labels

are updated so that they capture the different amount of similarity of a base example to examples from
different classes in the target dataset. A similar analysis can also be done for our RR method – in
such case the result would be similar and would include a further proportionality constant dependent
on the base examples (not affecting the intuitive interpretation).

C Additional experimental details

Normalization We normalize greyscale images using the standardly used normalization for MNIST
(mean of 0.1307 and standard deviation of 0.3081). All our greyscale images are of size 28 × 28.
Colour images are normalized using CIFAR-10 normalization (means of about 0.4914, 0.4822,
0.4465, and standard deviations of about 0.247, 0.243, 0.261 across channels). All colour images are
reshaped to be of size 32× 32.

Table 4: Comparison of training
times of DD [35] and our LD
(mins).

MNIST CIFAR-10

DD 116 205
LD 61 86
LD (RR) 65 98
Our DD 67 96
Our DD (RR) 72 90

Computational resources Each experiment was done on a
single GPU, in almost all cases NVIDIA 2080 Ti. Shorter (400
epochs) experiments took about 1 or 2 hours to run, while longer
(800 epochs) experiments took between 2 and 4 hours.

Training time In Table 4 we compare training times of our
framework and the original DD (using the same settings and hard-
ware). Besides evaluating LD, we also use our meta-learning
algorithm to implement an image-distillation strategy for direct
comparison with the original DD. The results show our online
approach significantly accelerates training. Our DD is compa-
rable to LD, and both are faster than original DD. However, we
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focus on LD because our version of DD was relatively unstable
(Table 17) and led to worse performance than LD, perhaps because learning synthetic images is more
complex than synthetic labels. This shows we need both the labels and our re-initializing strategy.

In addition, Figure 5 illustrates the difference between a standard model used for second-order label
distillation and a model that uses global ridge regression classifier weights (used for first-order RR
label distillation). The two models are almost identical – only the final linear layer is different.

Feature extractor 
with CNN layers

Input

Linear layer

ReLU
non-linearity

Linear layer

ReLU
non-linearity

Linear layer

Feature extractor 
with CNN layers

Input

Linear layer

ReLU
non-linearity

Linear layer

ReLU
non-linearity

Global RR 
classifier weights

Standard 
model 

Model with ridge
regression weights

Prediction Prediction

Figure 5: Comparison of a standard model used for second-order label distillation and a model that
uses global ridge regression classifier weights (used for first-order RR label distillation).

D Additional experiments

Stability and dependence on choice of base examples To evaluate the consistency of our results,
we repeat the entire pipeline and report the results in Table 5. In the previous experiments, we used
one randomly chosen but fixed set of base examples per source task. We investigate the impact of
base example choice by drawing further random base example sets. The results in Table 6 suggest that
the impact of base example choice is slightly larger than that of the variability due to the distillation
process, but still small overall. Note that the ± standard deviations in all cases quantify the impact of
retraining from different random initializations at meta-test, given a fixed base set and completed
distillation. It is likely that if the base examples were not selected randomly, the impact of using
specific base examples would be larger. In fact, future work could investigate how to choose base
examples so that learning synthetic labels for them improves the result further. We have tried the
following strategy, but the label distillation results remained similar to the previous results:

• Try 50 randomly selected sets of examples, train a model with each three times (for robust-
ness) and measure the validation accuracy.

• The validation accuracy is measured for various numbers of steps, in most cases we evaluate
every 50 steps up to 1000 steps (or 1700 steps when there are more than 100 base examples).

• Select the set with the largest mean validation accuracy at any point of training (across the
three runs).
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• This strategy maximizes the performance of the baselines, but could potentially also help
the label distillation since these examples could be generally better for training.

The results for this strategy are in Table 7.

Dependence on target dataset size Our experiments use a relatively large target dataset (about
50000 examples) for meta-learning. We study the impact of reducing the amount of target data for
distillation in Table 8. Using 5000 or more examples (about 10% of the original size) is enough to
achieve comparable performance.

Transferability of RR synthetic labels to standard model training When using RR, we train
a validation and test model with RR and global classifier weights obtained using pseudo-gradient.
In this experiment we study what happens if we create synthetic labels with RR, but do validation
and testing with standard models trained from scratch without RR. For a fair comparison, we use
the same synthetic labels for training a new RR model and a new standard model. Validation for
early stopping is done with a standardly trained model. The results in Table 16 suggest RR labels
are largely transferable (even in cross-dataset scenarios), but there is some decrease in performance.
Consequently, it is better to learn the synthetic labels using second-order approach if we want to train
a standard model without RR during testing (comparing with the results in Table 1, 2 and 3).

Intuition on cross-dataset distillation. To illustrate the mechanism behind cross-dataset distilla-
tion, we use the distilled labels to linearly combine base EMNIST example images weighted by their
learned synthetic labels in order to estimate a prototypical KMNIST/MNIST target class example
as implied by learned LD labels. Although the actual mechanism is more complex than this due to
the non-linearity of the neural network, we can qualitatively see individual KMNIST/MNIST target
classes are approximately encoded by their linear EMNIST LD prototypes as shown in Figure 9.

E Results of analysis

Our tables report the mean test accuracy and standard deviation (%) across 20 models trained from
scratch using the base examples and synthetic labels. When analysing the original DD, 200 randomly
initialized models are used.

Table 5: Repeatability. Label distillation is quite repeatable. Performance change from repeating the
whole distillation learning and subsequent re-training is small. We used 100 base examples for these
experiments. Datasets: E = EMNIST, M = MNIST.

Trial 1 Trial 2 Trial 3

MNIST (LD) 87.27 ± 0.69 87.49 ± 0.44 86.77 ± 0.77
MNIST (LD RR) 87.85 ± 0.43 88.31 ± 0.44 88.07 ± 0.46
E→M (LD) 77.09 ± 1.66 76.81 ± 1.47 77.10 ± 1.74
E→M (LD RR) 82.70 ± 1.33 83.06 ± 1.43 81.46 ± 1.70

Table 6: Base example sensitivity. Label distillation has some sensitivity to the specific set of base
examples (chosen by a specific random seed), but the sensitivity is relatively low. We used 100 base
examples for these experiments. It is likely that label distillation would be more sensitive for a smaller
number of base examples.

Set 1 Set 2 Set 3 Set 4 Set 5

MNIST (LD) 84.91 ± 0.92 87.38 ± 0.81 87.49 ± 0.44 87.12 ± 0.47 85.16 ± 0.48
MNIST (LD RR) 87.82 ± 0.60 88.78 ± 0.57 88.31 ± 0.44 88.40 ± 0.46 87.77 ± 0.60
E→M (LD) 79.34 ± 1.36 74.55 ± 1.00 76.81 ± 1.47 78.59 ± 1.05 78.55 ± 1.32
E→M (LD RR) 81.67 ± 1.39 83.30 ± 1.38 83.06 ± 1.43 82.62 ± 1.70 83.43 ± 0.98
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Table 7: Optimized base examples: within-dataset distillation recognition accuracy (%). Our label
distillation (LD) outperforms prior Dataset Distillation [35] (DD) and SLDD [30], and scales to
synthesizing more examples. The LD results remained similar to the original results even with
optimized base examples.

Base examples 10 20 50 100 200 500

M
N

IS
T

LD 66.96 ± 2.01 74.37 ± 1.65 83.17 ± 1.28 86.66 ± 0.44 90.75 ± 0.49 93.22 ± 0.41
Baseline 56.60 ± 3.10 64.77 ± 1.90 77.33 ± 2.51 84.86 ± 1.16 88.33 ± 1.04 92.87 ± 0.67
Baseline LS 60.44 ± 2.05 66.41 ± 2.14 80.54 ± 1.94 86.98 ± 0.99 91.12 ± 0.79 95.56 ± 0.18
LD RR 71.34 ± 2.19 73.34 ± 1.18 84.66 ± 0.89 88.30 ± 0.46 88.91 ± 0.36 89.73 ± 0.39
Baseline RR 59.20 ± 2.18 65.22 ± 2.29 77.34 ± 1.68 84.70 ± 0.81 87.87 ± 0.68 92.39 ± 0.53
Baseline RR LS 60.63 ± 1.64 65.61 ± 1.08 77.39 ± 1.67 85.63 ± 0.95 88.89 ± 0.88 94.33 ± 0.44
DD 79.5 ± 8.1
SLDD 82.7 ± 2.8

C
IF

A
R

-1
0

LD 26.65 ± 0.94 29.07 ± 0.62 35.03 ± 0.48 38.17 ± 0.36 42.12 ± 0.56 41.90 ± 0.28
Baseline 17.57 ± 1.63 21.66 ± 0.91 23.59 ± 0.80 27.79 ± 1.01 33.49 ± 0.77 40.44 ± 1.33
Baseline LS 18.57 ± 0.68 22.91 ± 0.70 24.57 ± 0.83 29.27 ± 0.85 34.83 ± 0.75 40.15 ± 0.66
LD RR 25.08 ± 0.39 28.17 ± 0.34 34.43 ± 0.38 37.59 ± 1.68 42.48 ± 0.25 44.81 ± 0.26
Baseline RR 18.42 ± 0.59 21.00 ± 0.73 22.45 ± 0.49 24.46 ± 1.67 30.96 ± 0.49 39.17 ± 0.47
Baseline RR LS 18.22 ± 0.67 22.31 ± 1.01 22.27 ± 0.75 24.84 ± 2.89 30.74 ± 0.80 38.86 ± 0.88
DD 36.8 ± 1.2
SLDD 39.8 ± 0.8

Table 8: Dependence on real training set size. Around 5000 examples (≈ 10% of all data) is sufficient.
Similarly as before, we used 100 base examples. Using all examples means using 50000 examples.

Target examples 100 500 1000 5000 10000 20000 All

E→M (LD) 50.70 ± 2.33 61.92 ± 3.62 57.39 ± 4.58 75.44 ± 1.60 76.79 ± 1.12 77.27 ± 1.25 77.09 ± 1.66
E→M (LD RR) 60.67 ± 3.17 72.09 ± 2.40 65.71 ± 3.77 76.83 ± 2.33 80.66 ± 1.97 82.44 ± 1.64 82.70 ± 1.33

Table 9: Sensitivity to number of training steps at meta-testing. We re-train the model with different
numbers of steps than estimated during meta-training. The results show our method is relatively
insensitive to the number of steps. The default number of steps Ti (+ 0 column) was estimated as 278
for MNIST (LD), 217 for MNIST (LD RR), 364 steps for E→M (LD) and 311 steps for E→M
(LD RR). Scenario with 100 base examples is reported.

Steps deviation - 50 - 20 - 10 + 0 + 10 + 20 + 50 + 100

MNIST (LD) 86.67 ± 0.51 86.91 ± 0.49 86.88 ± 0.50 86.77 ± 0.77 86.54 ± 0.68 87.05 ± 0.67 86.98 ± 0.70 86.59 ± 0.63
MNIST (LD RR) 88.21 ± 0.50 88.03 ± 0.51 88.32 ± 0.50 88.07 ± 0.46 88.10 ± 0.38 87.95 ± 0.45 87.98 ± 0.45 87.74 ± 0.62
E→M (LD) 77.28 ± 1.01 76.88 ± 1.97 77.26 ± 1.92 77.10 ± 1.74 76.40 ± 2.37 76.76 ± 2.18 77.80 ± 1.49 77.81 ± 1.23
E→M (LD RR) 81.84 ± 1.75 81.64 ± 1.76 81.45 ± 2.01 81.46 ± 1.70 81.55 ± 1.80 80.96 ± 1.74 81.34 ± 1.64 80.73 ± 2.45

Table 10: Sensitivity of original DD to number of steps. DD is very sensitive to using the specific
number of steps. We take the first N steps, keep their original learning rates, and assign learning rates
of 0 to the remaining steps. When we do 5 more steps than the original (30), we perform the final 5
steps with an average learning rate.

Steps 10 15 20 25 30 35

MNIST 35.65 ± 11.19 43.25 ± 11.47 54.85 ± 12.28 52.54 ± 11.40 77.32 ± 5.08 53.89 ± 10.51
CIFAR-10 21.14 ± 4.08 22.50 ± 4.24 27.08 ± 3.22 28.54 ± 2.41 35.20 ± 1.09 28.80 ± 3.33

Table 11: Sensitivity of original DD to learning rates. DD is sensitive to using the specific learning
rates.

Learning rate Optimized Average of optimized

MNIST 77.32 ± 5.08 62.38 ± 13.11
CIFAR-10 35.20 ± 1.09 30.59 ± 3.95
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Table 12: Sensitivity of original DD to order of examples. DD is sensitive to using the specific order
of training examples.

Order Original Shuffled within epoch Shuffled across epochs

MNIST 77.32 ± 5.08 50.20 ± 12.83 62.67 ± 10.82
CIFAR-10 35.20 ± 1.09 24.65 ± 2.16 22.59 ± 3.23

Table 13: Transferability of distilled labels across different architectures (second-order method). The
upper part of the table shows performance of various test models when trained on distilled labels
synthetised with AlexNet only. The middle part shows the baseline performance of training models
with different architectures on true labels. The lower part shows that distilled labels work even in
cross-dataset scenario (labels trained with AlexNet only). The results clearly suggest the distilled
labels generalize across different architectures.

Base examples 10 20 50 100 200 500

CIFAR-10 LD
AlexNet 26.09 ± 0.58 30.41 ± 0.81 35.21 ± 0.50 38.39 ± 0.62 40.98 ± 0.50 42.78 ± 0.29
LeNet 19.33 ± 2.50 24.17 ± 1.42 28.14 ± 1.37 32.65 ± 1.22 36.60 ± 1.46 39.67 ± 0.85
ResNet-18 17.97 ± 1.23 24.64 ± 0.92 27.36 ± 1.07 31.01 ± 0.84 35.33 ± 0.97 39.32 ± 0.61

CIFAR-10 baseline
AlexNet 14.35 ± 1.39 16.72 ± 0.76 21.08 ± 0.93 25.39 ± 0.86 31.39 ± 1.12 37.17 ± 1.58
LeNet 13.20 ± 1.86 15.31 ± 1.09 18.15 ± 0.82 21.63 ± 1.45 25.87 ± 1.26 32.99 ± 0.86
ResNet-18 13.80 ± 1.19 18.29 ± 1.43 20.56 ± 0.75 23.44 ± 1.04 28.98 ± 1.05 33.16 ± 1.12

CUB to CIFAR-10 LD
AlexNet 25.95 ± 0.90 27.73 ± 1.09 31.00 ± 0.78 34.99 ± 0.69 37.83 ± 0.65 39.44 ± 0.53
LeNet 20.18 ± 1.56 23.15 ± 1.72 26.16 ± 1.55 28.73 ± 1.44 30.71 ± 1.80 35.41 ± 0.88
ResNet-18 17.12 ± 1.32 17.80 ± 1.26 21.22 ± 1.04 23.38 ± 0.95 23.39 ± 0.90 26.71 ± 0.89

Table 14: Transferability of distilled labels across different architectures (RR method). The upper part
of the table shows performance of various test models when trained on distilled labels synthetised
with AlexNet only. The middle part shows the baseline performance of training models with different
architectures on true labels. The lower part shows that distilled labels work even in cross-dataset
scenario (labels trained with AlexNet only). The results clearly suggest the distilled labels generalize
across different architectures. Note that lower RR results for ResNet-18 may be caused by significantly
lower dimensionality of the RR layer (64 features + 1 for bias), while AlexNet and LeNet have 192
features + 1 for bias in the RR layer.

Base examples 10 20 50 100 200 500

CIFAR-10 LD
AlexNet 26.78 ± 0.84 29.51 ± 0.41 34.71 ± 0.45 38.29 ± 0.92 41.14 ± 0.37 42.71 ± 0.27
LeNet 20.24 ± 2.06 23.58 ± 1.62 28.05 ± 1.66 30.64 ± 1.47 34.52 ± 1.16 38.75 ± 0.96
ResNet-18 16.63 ± 0.88 17.98 ± 1.38 23.03 ± 1.21 26.66 ± 0.73 31.08 ± 0.92 36.37 ± 0.81

CIFAR-10 baseline
AlexNet 13.37 ± 0.75 17.20 ± 0.50 19.07 ± 0.75 24.72 ± 0.53 29.94 ± 0.65 36.20 ± 0.97
LeNet 12.33 ± 0.88 14.28 ± 0.74 17.31 ± 0.97 20.61 ± 1.13 24.15 ± 0.98 28.92 ± 0.80
ResNet-18 14.04 ± 1.20 16.60 ± 1.25 18.75 ± 1.17 22.61 ± 1.03 28.03 ± 0.72 33.72 ± 1.74

CUB to CIFAR-10 LD
AlexNet 26.08 ± 1.14 29.37 ± 0.36 31.46 ± 3.94 35.74 ± 0.81 37.26 ± 1.63 40.94 ± 4.61
LeNet 22.69 ± 2.09 24.42 ± 1.53 26.35 ± 1.26 29.84 ± 1.36 31.68 ± 1.09 35.66 ± 1.98
ResNet-18 16.23 ± 1.44 17.44 ± 0.84 20.06 ± 0.74 23.48 ± 1.00 21.31 ± 0.82 29.86 ± 0.93

Table 15: Sensitivity of original DD to a change in architecture (trained with AlexNet). The same
order of examples used as during training, with the optimized learning rates. We have not been able
to easily integrate ResNet-18 to the implementation provided by the authors [35].

AlexNet LeNet

CIFAR-10 35.20 ± 1.09 25.92 ± 2.35
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Table 16: Transferability of RR synthetic labels to standard model training (both within-dataset and
cross-dataset scenarios evaluated). 100 base examples used. Datasets: E = EMNIST, M = MNIST,
K= KMNIST, B = CUB, C = CIFAR-10, K-49 = Kuzushiji-49.

RR model Standard model

MNIST 88.25 ± 0.37 87.07 ± 0.64
CIFAR-10 38.40 ± 0.41 37.16 ± 0.59

CIFAR-100 10.96 ± 1.08 8.93 ± 0.27

E→M 80.09 ± 1.84 76.04 ± 2.29
E→ K 58.14 ± 0.91 50.37 ± 2.75
B→ C 34.81 ± 6.46 35.76 ± 0.54
E→ K-49 17.56 ± 1.62 13.28 ± 1.62

Table 17: Dataset distillation of images. The results show we have not obtained strong and stable
results when distilling synthetic images rather than labels (likely because of the complexity of the
flexible task). It may be possible to obtain better results on distilling images with our approach, but it
likely requires a lot more tuning than we have done.

Base examples 10 20 50 100

MNIST (DD) 55.48 ± 4.42 17.90 ± 4.54 34.40 ± 4.49 34.44 ± 6.15
MNIST (DD RR) 22.33 ± 2.75 49.30 ± 2.72 30.16 ± 5.32 36.43 ± 5.50
CIFAR-10 (DD) 12.99 ± 1.41 12.09 ± 0.99 16.01 ± 1.48 17.92 ± 1.71
CIFAR-10 (DD RR) 20.20 ± 0.38 22.71 ± 0.79 26.04 ± 1.22 27.05 ± 1.86

Figure 6: Distribution of label values across base example hard labels and distilled soft-label vectors.
Within-dataset CIFAR-10 scenario with 100 base examples is shown. We can see that to a certain
extent the original classes are recovered, but a lot of non-trivial information is added that presumably
leads to strong improvements over a baseline with true or smooth labels. Numbers are shown when
the values are at least 0.05.
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Figure 7: Distribution of label values across base example hard labels and distilled soft-label vectors.
The upper row shows the mean distilled labels for different original classes for within-dataset MNIST
scenario with 100 base examples. We can see that to a large extent the original labels are preserved
with an additional noise on visually similar classes such as 4 and 9. At the same time, some non-
trivial information is learned, especially for our RR method. The lower row shows the mean distilled
labels for different original EMNIST (“English”) classes used to recognize KMNIST (“Japanese”)
characters. 100 base examples scenario. Numbers are shown when the values are at least 0.05.
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Second-order RR
[0.00, 0.00, 0.01, 0.99, 0.00,
 0.01, 0.00, 0.00, 0.00, 0.00]
[0.00, 0.00, 0.00, 0.00, 0.02,
 0.00, 0.00, 0.02, 0.00, 0.95]
[0.00, 0.93, 0.00, 0.00, 0.00,
 0.00, 0.00, 0.07, 0.00, 0.00]
[0.00, 0.00, 0.02, 0.00, 0.00,
 0.00, 0.00, 0.00, 0.97, 0.00]
[0.00, 0.00, 0.00, 0.00, 0.00,
 0.00, 0.00, 0.99, 0.00, 0.00]

[0.00, 0.01, 0.01, 0.76, 0.00,
 0.00, 0.00, 0.20, 0.01, 0.00]
[0.00, 0.00, 0.00, 0.00, 0.36,
 0.00, 0.00, 0.32, 0.06, 0.26]
[0.00, 0.73, 0.00, 0.05, 0.02,
 0.00, 0.01, 0.07, 0.04, 0.09]
[0.00, 0.00, 0.13, 0.01, 0.01,
 0.14, 0.17, 0.00, 0.54, 0.00]
[0.19, 0.07, 0.00, 0.00, 0.00,
 0.05, 0.06, 0.56, 0.00, 0.06]

[0.35, 0.00, 0.02, 0.02, 0.03,
 0.01, 0.00, 0.18, 0.04, 0.34]
[0.00, 0.42, 0.03, 0.01, 0.14,
 0.01, 0.31, 0.00, 0.06, 0.03]
[0.00, 0.00, 0.08, 0.01, 0.00,
 0.01, 0.00, 0.79, 0.00, 0.11]
[0.00, 0.00, 0.00, 0.00, 0.00,
 0.00, 0.00, 0.02, 0.01, 0.97]
[0.00, 0.01, 0.17, 0.29, 0.21,
 0.01, 0.14, 0.16, 0.00, 0.01]

[0.26, 0.00, 0.01, 0.09, 0.04,
 0.00, 0.02, 0.19, 0.12, 0.27]
[0.00, 0.23, 0.10, 0.00, 0.19,
 0.02, 0.20, 0.01, 0.12, 0.13]
[0.01, 0.00, 0.07, 0.08, 0.00,
 0.01, 0.29, 0.49, 0.00, 0.05]
[0.06, 0.13, 0.22, 0.00, 0.03,
 0.00, 0.00, 0.04, 0.19, 0.32]
[0.00, 0.11, 0.16, 0.16, 0.11,
 0.00, 0.21, 0.22, 0.00, 0.04]

[0.03, 0.47, 0.04, 0.03, 0.03,
 0.04, 0.03, 0.02, 0.11, 0.21]
[0.00, 0.01, 0.31, 0.00, 0.29,
 0.01, 0.34, 0.03, 0.00, 0.01]
[0.61, 0.02, 0.04, 0.00, 0.01,
 0.00, 0.00, 0.00, 0.32, 0.00]
[0.03, 0.01, 0.25, 0.07, 0.24,
 0.15, 0.10, 0.14, 0.00, 0.01]
[0.01, 0.05, 0.02, 0.27, 0.07,
 0.35, 0.10, 0.08, 0.02, 0.03]

[0.00, 0.48, 0.07, 0.01, 0.02,
 0.11, 0.00, 0.01, 0.14, 0.17]
[0.00, 0.04, 0.25, 0.05, 0.19,
 0.03, 0.38, 0.06, 0.01, 0.00]
[0.42, 0.09, 0.10, 0.01, 0.01,
 0.00, 0.00, 0.00, 0.35, 0.02]
[0.00, 0.02, 0.15, 0.08, 0.10,
 0.18, 0.16, 0.27, 0.00, 0.03]
[0.03, 0.01, 0.08, 0.25, 0.12,
 0.31, 0.02, 0.16, 0.02, 0.00]

[0.04, 0.37, 0.01, 0.04, 0.01,
 0.05, 0.07, 0.03, 0.11, 0.28]
[0.01, 0.00, 0.24, 0.06, 0.32,
 0.08, 0.13, 0.15, 0.00, 0.00]
[0.18, 0.12, 0.08, 0.08, 0.06,
 0.07, 0.03, 0.06, 0.17, 0.14]
[0.00, 0.02, 0.13, 0.18, 0.13,
 0.17, 0.18, 0.18, 0.00, 0.01]
[0.00, 0.01, 0.06, 0.09, 0.04,
 0.20, 0.06, 0.52, 0.00, 0.01]

[0.03, 0.15, 0.04, 0.11, 0.04,
 0.11, 0.11, 0.05, 0.16, 0.20]
[0.04, 0.03, 0.16, 0.10, 0.23,
 0.07, 0.11, 0.22, 0.02, 0.02]
[0.20, 0.06, 0.12, 0.12, 0.06,
 0.09, 0.05, 0.07, 0.13, 0.10]
[0.02, 0.04, 0.18, 0.14, 0.10,
 0.13, 0.19, 0.18, 0.00, 0.02]
[0.06, 0.10, 0.12, 0.10, 0.09,
 0.12, 0.05, 0.26, 0.00, 0.10]

Figure 8: Examples of distilled labels for both second-order and RR label distillation. Scenarios:
1) within-dataset MNIST, 2) cross-dataset EMNIST (“English”) source to KMNIST (“Japanese”)
target, 3) within-dataset CIFAR-10, 4) cross-dataset CUB (birds) source to CIFAR-10 target. Five
base examples from each scenario are shown in the order described.
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(a) KMNIST (b) MNIST

Figure 9: Cross-dataset task: reconstructed images from KMNIST (Japanese letters) and MNIST
(digits) based on combination of EMNIST base examples (English letters) (100 base examples used).
Each row corresponds to a separate class, while the leftmost column shows the reconstructed image
and the other three columns show actual examples from the same class. One image is reconstructed for
each target dataset class. The base example images are combined pixel-wise with proportions based
on the element of the synthetic label vector corresponding to the class that is being reconstructed.
Note that KMNIST images in the same class can look very different because of different ways of
writing the character, which makes reconstruction more challenging. Some of the reconstructed
images resemble images from the target dataset classes, which shows that LD learns labels that
combine base examples so that their pixel-wise combination, weighted based on the synthetic class
labels, looks similar to the target class images.
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