Synthetic Petri Dish: A Novel Surrogate Model for
Rapid Architecture Search

Aditya Rawal* Joel Lehman*
Amazon AWS Al Labs Open Al
adirawal@amazon.com

Felipe Petroski Such* Jeff Clune* Kenneth O. Stanley*
Open Al Open Al Open Al
Abstract

Neural Architecture Search (NAS) explores a large space of architectural motifs —
a compute-intensive process that often involves ground-truth evaluation of each
motif by instantiating it within a large network, and training and evaluating the
network with thousands or more data samples. Inspired by how biological motifs
such as cells are sometimes extracted from their natural environment and studied
in an artificial Petri dish setting, this paper proposes the Synthetic Petri Dish
model for evaluating architectural motifs. In the Synthetic Petri Dish, architectural
motifs are instantiated in very small networks and evaluated using very few learned
synthetic data samples (to effectively approximate performance in the full problem).
The relative performance of motifs in the Synthetic Petri Dish can substitute for
their ground-truth performance, thus accelerating the most expensive step of NAS.
Unlike other neural network-based prediction models that parse the structure of
the motif to estimate its performance, the Synthetic Petri Dish predicts motif
performance by training the actual motif in an artificial setting, thus deriving
predictions from its true intrinsic properties. Experiments in this paper demonstrate
that the Synthetic Petri Dish can therefore predict the performance of new motifs
with significantly higher accuracy, especially when insufficient ground truth data
is available. Our hope is that this work can inspire a new research direction
in studying the performance of extracted components of models in a synthetic
diagnostic setting optimized to provide informative evaluations.

1 Introduction

The architecture of deep neural networks (NNs) is critical to their performance. This fact motivates
neural architecture search (NAS), wherein the choice of architecture is often framed as an automated
search for effective motifs, i.e. the design of a repeating recurrent cell or activation function that is
repeated often in a larger NN blueprint. However, evaluating a candidate architecture’s ground-truth
performance in a task of interest depends upon training the architecture to convergence. Complicating
efficient search, the performance of an architectural motif nearly always benefits from increased
computation (i.e. larger NNs trained with more data). The implication is that the best architectures
often require training near the bounds of what computational resources are available, rendering naive
NAS (i.e. where each candidate architecture is trained to convergence) exorbitantly expensive.

To reduce the cost of NAS, methods often exploit heuristic surrogates of true performance. For
example, motif performance can be evaluated after a few epochs of training or with scaled-down

*Work done at Uber Al Labs

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.

architectural blueprints, which is often still expensive (because maintaining reasonable fidelity
between ground-truth and surrogate performance precludes aggressive scaling-down of training).
Another approach learns models of the search space (e.g. Gaussian processes models used within
Bayesian optimization), which improve as more ground-truth models are trained, but cannot generalize
well beyond the examples seen. This paper explores whether the computational efficiency of NAS
can be improved by creating a new kind of surrogate, one that can benefit from miniaturized training
and still generalize beyond the observed distribution of ground-truth evaluations. To do so, we take
inspiration from an idea in biology, bringing to machine learning the application of a Synthetic Petri
Dish microcosm that aims to identify high-performing architectural motifs.

The overall motivation behind “in vitro” (test-tube) experiments in biology is to investigate in a
simpler and controlled environment the key factors that explain a phenomenon of interest in a messier
and more complex system. For example, to understand causes of atypical mental development,
scientists extract individual neuronal cells taken from brains of those demonstrating typical and
atypical behavior and study them in a Petri dish [Adhya et al.l 2018]]. The approach proposed in this
paper attempts to algorithmically recreate this kind of scientific process for the purpose of finding
better neural network motifs. The main insight is that biological Petri dish experiments often leverage
both (1) key aspects of a system’s dynamics (e.g. the behavior of a single cell taken from a larger
organism) and (2) a human-designed intervention (e.g. a measure of a test imposed on the test-tube).
In an analogy to NAS, (1) the dynamics of learning through backpropagation are likely important
to understanding the potential of a new architectural motif, and (2) compact synthetic datasets can
illuminate an architecture’s response to learning. That is, we can use machine learning to learn data
such that training an architectural motif on the learned data results in performance indicative of the
motif’s ground-truth performance.

In the proposed approach, motifs are extracted from their ground-truth evaluation setting (i.e. from
large-scale NNs trained on the full dataset of the underlying domain of interest, e.g. MNIST),
instantiated into very small networks (called motif-networks), and evaluated on learned synthetic data
samples. These synthetic data samples are trained such that the performance ordering of motifs in
this Petri dish setting (i.e. a miniaturized network trained on a few synthetic data samples) matches
their ground-truth performance ordering. Because the relative performance of motifs is sufficient
to distinguish good motifs from bad ones, the Petri dish evaluations of motifs can be a surrogate
for ground-truth evaluations in NAS. Training the Synthetic Petri Dish is also computationally
inexpensive, requiring only a few ground-truth evaluations, and once trained it enables extremely
rapid evaluations of new motifs.

0, —4— Ground-truth performance of 2-layer, 100 wide MNIST network
2 “o,‘ 4— Synthetic Petri Dish Model Predicted Performance
"’o, —4— Neural Network Model Predicted Performance
o
; oo
> .
g 1 l ”’“r
3 +* i *tes,
o * ! %,
< * ! o“or
'
- oo,
g° * ! F s
© . ! S T ”0&;, ==
§ ! Ground-truth values used for $ s w”"
g 1 * ' training performance prediction . “‘“““
i models restricted to this range “*.om
| orree
. | Peak Performance
-2 ! atslope = 0.23 “’”\
1Vl
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Sigmoid Slope Value

Figure 1: Predicting the Optimal Slope of the Sigmoid Activation. Each blue diamond depicts the
normalized validation accuracy (ground-truth) of a 2-layer, 100-wide feed-forward network with a
unique sigmoid slope value (mean of 20 runs). The validation accuracy peaks at a slope of 0.23. Both
the Synthetic Petri Dish and a neural network surrogate model that predicts performance as a function
of sigmoid slope are trained on a limited set of ground-truth points, restricted to the blue-shaded
region to the right of the peak. The normalized performance predictions for Synthetic Petri Dish are
shown with green diamonds and those for the NN surrogate model are shown as red diamonds. The
plot shows that the NN model predictions overfits the training data. In contrast, because the Synthetic
Petri Dish conducts experiments with small neural networks with these sigmoid slope values it is
more more accurate at inferring both that there is a peak and its approximate location.

A key motivating hypothesis is that because the Synthetic Petri Dish evaluates the motif by actually
using it in a simple experiment (e.g. training it with SGD and then evaluating it), its predictions can
generalize better than other neural network (NN) based models that predict motif performance based
on only observing the motif’s structure and resulting performance [Liu et al., 2018al|Luo et al., 2018]].
For example, consider the demonstration problem of predicting the ground-truth performance of a
two-layer feedforward MNIST network with sigmoidal non-linearity. The blue points in FigureT]
shows how the ground-truth performance of the MNIST network varies when the slope of its sigmoid
activations (the term c in the sigmoid formula 1/(1 4+ e~°")) is varied in the range of 0.01 — 2.01.
The MNIST network performance peaks near a slope-value of 0.23. Similarly to the NN-based model
previously developed in [Liu et al.|[2018a]],|Luo et al.|[2018]], one can try to train a neural network
that predicts the performance of the corresponding MNIST network given the sigmoid slope value
as input (Section [.T| provides full details). When training points (tuples of sigmoid slope value and
its corresponding MNIST network performance) are restricted to an area to the right of the peak
(Figurem blue-shaded region), the NN-based prediction model (Figure m red diamonds) generalizes
poorly to the test points on the left side of the peak (c < 0.23). However, unlike such a conventional
prediction model, the prediction of the Synthetic Petri Dish generalizes to test points left of the peak
(despite their behavior being drastically different than what would be expected solely based on the
points in the blue shaded region). That occurs because the Synthetic Petri Dish trains and evaluates
the actual candidate motifs, rather than just making predictions about their performance based on
data from past trials.

Beyond this explanatory experiment, the promise of the Synthetic Petri Dish is further demonstrated
on a challenging and compute-intensive language modelling task that serves as a popular NAS
benchmark. The main result is that Petri dish obtains highly competitive results even in a limited-
compute setting. Interestingly, these results suggest that it is indeed possible to extract a motif from a
larger setting and create a controlled setting (through learning synthetic data) where the instrumental
factor in the performance of the motif can be isolated and tested quickly, just as scientists use Petri
dishes to test specific hypothesis to isolate and understand causal factors in biological systems.

2 Related Work

NAS methods have discovered novel architectures that significantly outperform hand-designed
solutions [Zoph and Le| 2017, [Elsken et al., 2018}, |Real et al., 2017]]. These methods commonly
explore the architecture search space with either evolutionary algorithms [Suganuma et al.| 2017,
Miikkulainen et al.| 2018} |Real et al., 2019, [Elsken et al., 2019 or reinforcement learning [[Baker
et al.,|2016| Zoph and Lel 2017]. Because running NAS with full ground-truth evaluations can be
extremely expensive (i.e. requiring many thousands of GPU hours), more efficient methods have been
proposed. For example, instead of evaluating new architectures with full-scale training, heuristic
evaluation can leverage training with reduced data (e.g. sub-sampled from the domain of interest) or
for fewer epochs [Baker et al.l 2017, Klein et al., 2017].

More recent NAS methods such as DARTS [Liu et al.,[2018b] and ENAS [Pham et al.|[2018]] exploit
sharing weights across architectures during training to circumvent full ground-truth evaluations.
However, a significant drawback of such weight sharing approaches is that they constrain the
architecture search space and therefore limit the discovery of novel architectures.

Another approach to accelerate NAS is to train a NN-based performance prediction model that
estimates architecture performance based on its structure [Liu et al.l 2018a]. Building on this idea,
Neural Architecture Optimization (NAO) trains a LSTM model to simultaneously predict architecture
performance as well as to learn an embedding of architectures. Search is then performed by taking
gradient ascent steps in the embedding space to generate better architectures. NAO is used as a
baseline for comparison in Experiment[4.2]

Bayesian optimization (BO) based NAS methods have also shown promising results [Kandasamy
et al., 2018 |Cao et al.l |2019]. BO models the architecture space using a Gaussian process (GP),
although its behavior is sensitive to the choice of a kernel function that models the similarity between
any two architectures. Another recent NAS method presents a technique to progressively grow an
architecture by adding skip connections, and is named similarly (“Petridish”) to the method proposed
here [Hu et al.,[2019]. However unlike the Synthetic Petri Dish introduced here, which is a learned
surrogate for NAS, Petridish [Hu et al., |2019] is instead an incremental growth method.

MNIST Training and Validation Data |

Synthetic

(Data Size = 60,000 x 784) Petri Dish
¢ ‘ ¢ 2a) " Inference
a) Traine
- - @ D> > Ground-truth Petri Dish (@b) n#etv}’
o '<° training and Model ot
evaluation
o 0 o,
Validation | Validation I Validation | ';\:o;‘i:fse
Loss 1 Loss 2 """ " LossN
Extracting @ Q @ Syntheti NAS
the motif: Average Mean Error normali o method to
Reducing a i di e " Petri Dish o
e g Petri dish losses and normalized ground-truth loss P search for
2-layer, 100 iesining new motifs
wide MLP ﬁ ﬁ
to a 2-layer, Validation | Validation | Validation
ingl Loss 1 Loss 2 """ " _LossN
neuron- O o @ Outer-loop (1a) Motif (1b) Motif
wide MLP training to ground-truth ground-truth
Inner-loop maximize performance N performance
Training and fimilarity
idation of veen
et motif-networks // Petri dish &
ground-truth
performance ﬁ

Synthetic Training and Validation Data
(Data Size =40 x 10)

(0) Initial Motif-set

N

Figure 2: (a) Synthetic Petri Dish Training. The left figure illustrates the inner-loop and outer-loop
training procedure. The motifs (in this example, activation functions) are extracted from the full
network (e.g a 2-layer, 100 wide MLP) and instantiated in separate, much smaller motif-networks
(e.g. a two-layer, single-neuron MLP). The motif-networks are trained in the inner-loop with the
synthetic training data and evaluated using synthetic validation data. In the outer-loop, an average
mean squared error loss is computed between the normalized Petri dish validation losses and the
corresponding normalized ground-truth losses. Synthetic training and validation data are optimized
by taking gradient steps w.r.t the outer-loop loss. (b) Combining Architecture Search with the
Petri Dish. Functions are depicted inside rectangles and function outputs are depicted as arrows with
their descriptions adjacent to them.

(a) Synthetic Petri Dish Training Procedure (b) Combining Architecture

Search with the Petri Dish

Generative teaching networks (GTNs) also learn synthetic data to accelerate NAS [Such et al.;[2020].
However, learned data in GTNs helps to more quickly train full-scale networks to evaluate their
potential on real validation data. In the Petri dish, synthetic training and validation instead enables a
surrogate microcosm training environment for much smaller extracted motif-networks. Additionally,
GTNs are not explicitly trained to differentiate between different networks (or network motifs). In
contrast, the Synthetic Petri Dish is optimized to find synthetic input data on which the performance
of various architectural motifs is different.

3 Methods

Recall that the aim of the Synthetic Petri Dish is to create a microcosm training environment such
that the performance of a small-scale motif trained within it well-predicts performance of the fully-
expanded motif in the ground-truth evaluation. First, a few initial ground-truth evaluations of motifs
are needed to create training data for the Petri dish. In particular, consider N motifs for which
ground-truth validation loss values (L%, ., where i € 1,2, ...N) have already been pre-computed by
training each motif in the ground-truth setting. The next section details how these initial evaluations

are leveraged to train the Synthetic Petri Dish.

3.1 Training the Synthetic Petri Dish

To train the Synthetic Petri Dish first requires extracting the N motifs from their ground-truth setting
and instantiating each of them in miniature as separate motif-networks. For the experiments performed
in this paper, the ground-truth network and the motif-network have the same overall blueprint and
differ only in the width of their layers. For example, Figure 2h shows a ground-truth network’s size
reduced from a 2-layer, 100-neuron wide MLP to a motif-network that is a 2-layer MLP with a single
neuron per layer.

Given such a collection of extracted motif-networks, a small number of synthetic training and
validation data samples are then learned that can respectively be used to train and evaluate the motif-
networks. The learning objective is that the validation loss of motifs trained in the Petri dish resemble
the validation loss of the motif’s ground-truth evaluation (£%,.,.). Note that this training process
requires two nested optimization loops: an inner-loop that trains and evaluates the motif-networks on

the synthetic data and an outer-loop that trains the synthetic data itself.

Initializing the Synthetic Petri Dish: Before training the Petri dish, the motif-networks and syn-
thetic data must be initialized. Once the motifs have been extracted into separate motif-networks, each
motif-network is assigned the same initial random weights (6;,,;:). This constraint reduces confound-
ing factors by ensuring that the motif-networks differ from each other only in their instantiated motifs.
At the start of Synthetic Petri Dish training, synthetic training data (St = (gtrain yirainy) and
validation data samples SV = (gvalid yvalid)) are randomly initialized. Note that these learned
training and validation data can play distinct and complementary roles, e.g. the validation data can
learn to test out-of-distribution generalization from a learned training set. Empirically, setting the
training and validation data to be the same initially (i.e. St"%¥" = §valid) benefited optimization at
the beginning of outer-loop training; over iterations of outer-loop training, the synthetic training and
validation data then diverge. The size of the motif-network and the number of synthetic data samples
are chosen through the hyperparameter selection procedure described in Appendix[A.2]

Inner-loop training: The inner optimization loop is where the performance of motif-networks is
evaluated by training each such network independently with synthetic data. This training reveals a
sense of the quality of the motifs themselves.

In each inner-loop, the motif-networks are independently trained with SGD using the synthetic
training data (S*"%™). The motif-networks take synthetic training inputs (z‘"*") and produce their
respective output predictions (§*"%"). For each motif-network, a binary cross-entropy (BCE) loss is
computed between the output predictions (§"%") and the synthetic training labels (3y*"%'"). Because
the Petri dish is an artificial setting, the choice of BCE as the inner-loop loss (L, is independent
of the actual domain loss (used for ground-truth training), and other losses like regression loss could
instead be used. The gradients of the BCE loss w.r.t. the motif-network weights inform weight
updates (as in regular SGD).

0, = 0 — aVL:

'Lnner_train(

gtraim gty i€ 1,2,..,N (1)

where « is the inner-loop learning rate and 6} = 6;,,;;. Inner-loop training proceeds until individual
BCE losses converge. Once trained, each motif-network is independently evaluated using the synthetic
validation data (S?) to obtain individual validation loss values (£). These inner-loop
validation losses then enable calculating an outer-loop loss to optimize the synthetic data, which is
described next.

Outer-loop training: Recall that an initial sampling of candidate motifs evaluated in the ground-truth
setting serve as a training signal for crafting the Petri dish’s synthetic data. That is, in the outer loop,
synthetic training data is optimized to encourage motif-networks trained upon it to become accurate
surrogates for the performance of full networks built with that motif evaluated in the ground-truth
setting. The idea is that training motif-networks on the right (small) set of synthetic training data can
potentially isolate the key properties of candidate motifs that makes them effective.

To frame the outer-loop loss function, what is desired is for the validation loss of the motif-network
to induce the same relative ordering as the validation loss of the ground-truth networks; such relative
ordering is all that is needed to decide which new motif is likely to be best. One way to design
such an outer-loop loss with this property is to penalize differences between normalized loss values
in the Petri dish and ground-truth settin To this end, the motif-network (inner-loop) loss values
and their respective ground-truth loss values are first independently normalized to have zero-mean
and unit-variance. Then, for each motif, a mean squared error (MSE) loss is computed between the

normalized inner-loop validation loss (ﬁﬁnner_w”) and the normalized ground-truth validation loss
(£

¢ we)- The MSE loss is averaged over all the motifs and used to compute a gradient step to improve
the synthetic training and validation data.

2We tried an explicit rank-loss as well, but the normalized regression loss performed slightly better empiri-
cally.

N
1 N A
£outer = N § (‘C;nner_valid - L:érue)2 (2)
i=1

Sf:»alzn = S;rain - Bv£outer and S;ﬁlfld = S;}alid - BV‘Couter (3)

where f3 is the outer-loop learning rate. For simplicity, only the synthetic training (x"%1") and
validation (2¥*"*?) inputs are learned and the corresponding labels (3/"%", 3y are kept fixed to
their initial random values throughout training. Minimizing the outer-loop MSE loss (L, ¢e-) modifies
the synthetic training and validation inputs to maximize the similarity between the motif-networks’
performance ordering and motifs’ ground-truth ordering.

After each outer-loop training step, the motif-networks are reset to their original initial weights (6;,,;¢)
and the inner-loop training and evaluation procedure (equation [I)) is carried out again. The outer-loop
training proceeds until the MSE loss converges, resulting in optimized synthetic data.

3.2 Predicting Performance with the Trained Petri Dish

The Synthetic Petri Dish training procedure described so far results in synthetic training and validation
data optimized to sort motif-networks similarly to the ground-truth setting. This section describes how
the trained Petri dish can predict the relative performance of unseen motifs, which we call the Synthetic
Petri Dish inference procedure. In this procedure, new motifs are instantiated in their individual
motif-networks, and the motif-networks are trained and evaluated using the optimized synthetic data
(with the same hyperparameter settings as in the inner-loop training and evaluation). The relative
inner-loop validation loss for the motif-networks then serves as a surrogate for the motifs’ relative
ground-truth validation loss; as stated earlier, such relative loss values are sufficient to compare the
potential of new candidate motifs. Such Petri dish inference is computationally inexpensive because
it involves the training and evaluation of very small motif-networks with very few synthetic examples.
Accurately predicting the performance ordering of unseen motifs is contingent on the generalization
capabilities of the Synthetic Petri Dish (this aspect is further investigated in section ..

3.3 Combining Architecture Search with the Synthetic Petri Dish

Interestingly, the cheap-to-evaluate surrogate performance prediction given by the trained Petri dish
is complementary to most NAS methods that search for motifs, meaning that they can easily be
combined. Algorithm[I]in Appendix [A.T|shows one possible hybridization of Petri dish and NAS,
which is the one we experimentally investigate in this work.

First, the Petri dish model is warm-started by training (inner-loop and outer-loop) using the ground-
truth evaluation data (P,,4;) of a small set of randomly-generated motifs (X.,4;). Then in each
iteration of NAS, the NAS method generates M new motifs and the Petri dish inference procedure
inexpensively predicts their relative performance. The top K motifs (where K << M) with highest
predicted performance are then selected for ground-truth evaluation. The ground-truth performance
of motifs both guides the NAS method as well as provides further data to re-train the Petri dish model.
The steps outlined above are repeated until convergence and then the motif with the best ground-truth
performance is selected for the final test evaluation.

Synthetic Petri Dish training and inference is orders of magnitude faster than ground-truth evaluations,
thus making NAS computationally more efficient and faster to run, which can enable finding higher-
performing architectures given a limited compute budget.

4 Experiments

4.1 Searching for the Optimal Slope for Sigmoidal Activation Functions

Preliminary experiments demonstrated that when a 2-layer, 100-wide feed-forward network with
sigmoidal activation functions is trained on MNIST data, its validation accuracy (holding all else
constant) depends on the slope of the sigmoid. The points on the blue curve in Figure[l|demonstrate
this fact, where the empirical peak performance is a slope of 0.23. This simple dependence provides
a way to clearly illustrate the benefits of the Synthetic Petri Dish model.

Both the Synthetic Petri Dish and the NN-based surrogate model are trained using 30 ground-truth
points that are randomly selected from a restricted interval of sigmoid slope values (the blue-shaded
region in Figure[I). The remaining ground-truth points (outside the blue-shaded region) are used
only for testing. The NN-based surrogate control is a 2-layer, 10-neuron-wide feedforward network
that takes the sigmoid value as input and predicts the corresponding MNIST network validation
accuracy as its output. A mean-squared error loss is computed between the predicted accuracy and
the ground-truth validation accuracy, and the network is trained with the Adam optimizer.

For training the Synthetic Petri Dish model, each training motif (i.e. sigmoid with a unique slope
value) is extracted from the MNIST network and instantiated in a 2-layer, single-neuron-wide motif-
network (6;,,;;). The setup is similar to the one shown in Figure 2h). The motif-networks are trained
in the inner-loop for 200 SGD steps and subsequently their performance on the synthetic validation
data (£mmr _valia) 18 used to compute outer-loop MSE loss w.r.t the ground-truth performance (as
described in section [3.T). A total of 20 outer-loop training steps are performed. Hyperparameter
selection details for the two models are described in Appendix [A.3).

Results demonstrate that the NN-based model overfits the training points. (red-curve in Figure|[I)).
In contrast, the Synthetic Petri Dish predictions accurately infer that there is a peak (including the
falloff to its left) and also its approximate location (green-curve in Figure|[I)).

e NAO with Reduced Data e Synthetic Petri Dish with RS
. o Synthetic Petri Dish with NAO e RS with Partial Evaluation
4

62

60

Test Perplexity

58

56

40 60 80 100
Ground-truth evaluations

Figure 3: RNN Cell Search for PTB: This graph plots the test perplexity (mean of five runs) of the
best found cell for four NAS methods across variable numbers of NAS iterations. All the methods
are warmed up at the beginning (Step 0 in Figure[2p) with 40 ground-truth evaluations — notice the
top-left point with best test perplexity of 63.1. For Synthetic Petri Dish with RS (blue curve) and
Synthetic Petri Dish with NAO (green curve), the top 20 motifs with the best predicted performance
are selected for ground-truth evaluations in each NAS iteration. Original NAO [Luo et al., 2018]]
(not shown here) requires 1,000 ground-truth evaluations to achieve a test perplexity of 56.0. NAO
with Reduced Data (red-curve) shows the results obtained by running original NAO, but with fewer
ground-truth evaluations (the same number the Synthetic Petri Dish variants get). With such limited
data, Synthetic Petri Dish with NAO outperforms other NAS methods and achieves a test perplexity
of 57.1 after 100 ground-truth evaluations.

4.2 Architecture Search for Recurrent Cells

The previous experiment demonstrated that a Synthetic Petri Dish model trained with limited ground-
truth data can successfully generalize to unseen out-of-distribution motifs. This next experiment
tests whether the Synthetic Petri Dish can be applied to a more realistic and challenging setting, that
of NAS for a NN language model that is applied to the Penn Tree Bank (PTB) dataset — a popular
language modeling and NAS benchmark [Marcus et al.l [1993]]. In this experiment, the architectural
motif is the design of a recurrent cell. The recurrent cell search space and its ground-truth evaluation
setup is the same as in NAO [Luo et al.;|2018]|. This NAS problem is challenging because the search
space is expansive and few solutions perform well [Pham et al., 2018]. Each cell in the search space
is composed of 12 layers (each with the same layer width) that are connected in a unique pattern.
An input embedding layer and an output soft-max layer is added to the cell (each of layer width
850) to obtain a full network (27 Million parameters) for ground-truth evaluation. Each ground-truth
evaluation requires training on PTB data-set for 600 epochs and takes 10 hours on a Nvidia 1080Ti.

NAO is one of the state-of-the-art NAS methods for this problem and is therefore used as a baseline
in this experiment (called here original NAO). In the published results [Luo et al., 2018], original
NAO requires 1,000 ground-truth evaluations (300 GPU days) over three successive NAS iterations

to discover a cell with test perplexity of 56.0. These are good results, but the compute cost even to
reproduce them is prohibitively large for many researchers. Because the Synthetic Petri Dish offers a
potential low-compute option, in this experiment, different NAS methods are compared instead in a
setting where only limited ground-truth evaluation data is available (< 100 samples), giving a sense
of how far different methods can get with more reasonable compute resources.

Each NAS iteration can be accelerated if the number of costly ground-truth evaluations is reduced by
instead cheaply evaluating the majority of candidate motifs (i.e. new cells) in the Petri dish. For the
purpose of training the Synthetic Petri Dish, each cell is extracted from its ground-truth setting (850
neurons per layer) and is instantiated in a motif-network with three neurons per layer (its internal cell
connectivity, including its depth, remains unchanged). Thus, the ground-truth network that has 27
million parameters is reduced to a motif-network with only 140 parameters. To train motif-networks,
synthetic training and validation data each of size 20 x 10 x 10 (batch size X time steps X motif-network
input size) is learned (thus replacing the 923k training and 73k validation words of PTB). The Petri
dish training and inference procedure is very similar to the one described in Experiment .1} and it
adds negligible compute cost (2 extra hours for training, and a few minutes for inference on a CPU).

Following the steps outlined in algorithm [T|and Figure 2p, the Petri dish surrogate can be combined
with two existing NAS methods: (1) Random Search (RS) or (2) NAO itself, resulting in two new
methods called Synthetic Petri Dish-RS and Synthetic Petri Dish-NAO. Also, the Random Search
NAS method can be combined with partial evaluations resulting in another baseline (Appendix [A.4).

For the Synthetic Petri Dish variants, at the beginning of search, both the Petri dish surrogate and
the NAS method (RS/NAO) used within the Petri dish variant are warm-started with the ground-
truth data of an initial motif set (size 40). In each NAS iteration, 100 newly generated motifs
(variable M in algorithm [I]) are evaluated using the Petri dish inference procedure and only the top 20
predicted motifs (variable K in algorithm[I]) are evaluated for their ground-truth performance. The
test perplexity of the best found motif at the end of each NAS iteration is plotted in Figure 3| the
blue curve depicts the result for Synthetic Petri Dish-RS and green depicts the result for Synthetic
Petri Dish-NAO. For a fair comparison, original NAO is re-run in this limited ground-truth setting and
the resulting performance is depicted by the red-curve in Figure 3] The results show that Synthetic
Petri Dish-NAO outperforms both Synthetic Petri Dish-RS and NAO when keeping the amount of
ground-truth data points the same, suggesting that the Synthetic Petri Dish and NAO complement
each other well. The hybridization of Synthetic Petri Dish and NAO finds a cell that is competitive in
its performance (test perplexity 57.1) with original NAO (56.0), using only 1/10*" of original NAO’s
compute (and exceeds the performance of original NAO when both are given equivalent compute).

5 Discussion and Conclusions

In the general practice of science, often the question arises of what factor accounts for an observed
phenomenon. In the real world, with all its intricacy and complexity, it can be difficult to test or even
formulate a clear hypothesis on the relevant factor involved. For that reason, often a hypothesis is
formulated and tested in a simplified environment where the relevant factor can be isolated from the
confounding complexity of the world around it. Then, in that simplified setting it becomes possible to
run rapid and exhaustive tests, as long as there is an expectation that their outcome might correlate to
the real world. In this way, the Synthetic Petri Dish is a kind of microcosm of a facet of the scientific
method, and its synthetic data is the treatment whose optimization tethers the dynamics within the
simplified setting to their relevant counterparts in the real world.

By approaching architecture search in this way as a kind of question-answering problem on how
certain motifs or factors impact final results, we gain the intriguing advantage that the prediction
model is no longer a black box. Instead, it actually contains within it a critical piece of the larger world
that it seeks to predict. This piece, a motif cut from the ground-truth network (and its corresponding
learning dynamics), carries with it from the start a set of priors that no black box learned model could
carry on its own. These priors pop out dramatically in the simple sigmoid slope experiment — the
notion that there is an optimal slope for training and roughly where it lies emerges automatically from
the fact that the sigmoid slope itself is part of the Petri Dish prediction model. In the later NAS for
recurrent cells, the benefit in a more complex domain also becomes apparent, where the advantage of
the intrinsic prior enables the Petri Dish to have better performance than a leading NAS method when
holding the number of ground-truth evaluations constant, and achieves roughly the same performance
with 1/10" the compute when allowing differing numbers of ground-truth evaluations.

It is also possible that other methods can be built in the future on the idea of extracting a component of
a candidate architecture and testing it in another setting. The opportunity to tease out the underlying
causal factors of performance is a novel research direction that may ultimately teach us new lessons
on architecture by exposing the most important dimensions of variation through a principled empirical
process that could capture the spirit and power of the scientific process itself.

References

D. Adhya, E. Annuario, M. A. Lancaster, J. Price, S. Baron-Cohen, and D. P. Srivastava. Understand-
ing the role of steroids in typical and atypical brain development: Advantages of using a “brain in
a dish” approach. Journal of Neuroendocrinology, 30(2):e12547, 2018. doi: 10.1111/jne.12547.
URLhttps://onlinelibrary.wiley.com/doi/abs/10.1111/jne.12547.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 19-34, 2018a.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in neural information processing systems, pages 7816-7827, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. 2017. URL
https://arxiv.org/abs/1611.01578!

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. CoRR,
abs/1808.05377, 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V.
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In ICML, 2017.

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming approach
to designing convolutional neural network architectures. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 17, pages 497-504, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4920-8. doi: 10.1145/3071178.3071229. URL |http://doi.acml
org/10.1145/3071178.3071229\

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving deep
neural networks. In Robert Kozma, Cesare Alippi, Yoonsuck Choe, and Francesco Carlo Morabito,
editors, Artificial Intelligence in the Age of Neural Networks and Brain Computing. Amsterdam:
Elsevier, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4780—4789, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2019.

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures using reinforce-
ment learning. 2016. URL https://arxiv.org/pdf/1611.02167v2.pdfl

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. In /CLR, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 4095-4104, Stockholmsmissan, Stockholm Sweden, 10-15 Jul 2018. PMLR.

https://onlinelibrary.wiley.com/doi/abs/10.1111/jne.12547
https://arxiv.org/abs/1611.01578
http://doi.acm.org/10.1145/3071178.3071229
http://doi.acm.org/10.1145/3071178.3071229
https://arxiv.org/pdf/1611.02167v2.pdf

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 2016-2025. Curran Associates, Inc., 2018.

Shengcao Cao, Xiaofang Wang, and Kris M. Kitani. Learnable embedding space for efficient neural
architecture compression. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=S1xLN3CIYX.

Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric Horvitz, and Debadeepta Dey.
Efficient forward architecture search. Neural Information Processing Systems, 2019.

Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, and Jeff Clune. Generative
teaching networks: Accelerating neural architecture search by learning to generate synthetic
training data, 2020. URL https://openreview.net/forum?id=HJg_ECEKDrl.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english:
The penn treebank. Computational linguistics, 19(2), 1993.

P. Langley. Crafting papers on machine learning. In Pat Langley, editor, Proceedings of the 17th
International Conference on Machine Learning (ICML 2000), pages 1207—1216, Stanford, CA,
2000. Morgan Kaufmann.

Prajit Ramachandran, Barret Zoph, and Quoc Le. Searching for activation functions. 2018. URL
https://arxiv.org/pdf/1710.05941.pdfl

10

https://openreview.net/forum?id=S1xLN3C9YX
https://openreview.net/forum?id=HJg_ECEKDr
https://arxiv.org/pdf/1710.05941.pdf

Algorithm 1: Combining Architecture Search with the Synthetic Petri Dish

Input: Set of motifs already evaluated X = (). Initial set of motifs for ground-truth evaluation
Xeval- Performance of motifs P = (). Number of motifs to generate M. Number of motifs to
select K s.t. K << M. Number of NAS search iterations L. Additional Petri dish
hyperparameters (Appendix and [A4).
for/ =1to L do
Ground-truth Evaluation: Train each motif in X,,,; in the full-scale setting and obtain
full-scale validation set performance P,,;. Enlarge P : P = P U P,,,;. Enlarge
X : X =XUXcpau-
Petri dish Training: Train the Petri dish model using X and P (see sub-section [3.1)).
Architecture Search: Generate a set of M new motifs (X,,,,) using X and P as inputs to the
NAS method.
Performance Prediction: Run Synthetic Petri Dish inference for X, (sub-section [3;2]) to
obtain motif performance predictions.
Selection: Pick top K motifs (denoted by set X;,,) out of the set X,.,, based on their
predicted performance. Set X.yq1 = Xyop.
end for
Output: The motif within X with the best ground-truth performance.

A Appendix

A.1 Combining Synthetic Petri Dish with NAS
The steps to combine NAS with Synthetic Petri Dish are outlined in Algorithm [T}

A.2 Petri dish Hyperparameter Selection Procedure

Recall that an initial sampling of candidate motifs evaluated in the ground-truth setting serve as
training data for Petri dish (Step 0 in Figure[Zb). In order to determine the ideal hyperparameters for
Petri dish training, this initial motif ground-truth set (referred to as £;,,,. in Section is split into

equal parts as training (LY,.... 1rqin) and validation (£, ,..:4) sets. Hyperparameter setting that
i

results in the smallest outer-loop MSE loss (£ in equation [2) on the validation set (£}

outer rue_valid)

after training the Petri dish on the training set (Lime_tmm), are selected for the full experiment.

Specific hyperparameter values for each experiment are provided in the following sections.

A.3 Experimental Setup for Optimal Sigmoid Slope Search

This section provides further details on experiment[4.1] The sigmoid slope value is the motif in this
experiment.

A.3.1 Setup for Ground-truth Training

Previous work has shown that the slope of the sigmoid activation is a critical factor in determining
network performance [Ramachandran et al.| 2018]|]. Similarly, in this paper, it was empirically found
that the validation performance of a 2-layer 100-wide feedforward network on MNIST dataset is
dependent on the sigmoid slope. This dependence is shown by the blue-points in Figure[I] To generate
each of the blue points, the feedforward network was trained on 50K MNIST training samples and
evaluated on 10K validation samples, with the sigmoid slope value ranging between 0.01 — 2.01. All
other hyperparameters were held constant during each run and their specific values are provided in
Tablem For each slope value, a mean performance from 20 such runs (along with standard error bars)
is plotted in Figure/I]

A.3.2 Setup for Petri dish Training and Validation

The hyperparameter selection procedure follows the same template as described in Section[A.2] A
subset of 30 ground-truth points are randomly selected from a restricted interval of sigmoid slope
values ranging between 0.37 — 1.50 (blue-points in the blue-shaded region of Figure[I]). These 30
ground-truth points are split into two equal parts to create training (15) and validation data-set (15)
for Petri dish hyperparameter selection. Hyperparameter search range and the final selected values
are listed in Table

11

Hyperparameter Search Range Final Setting
Optimizer N/A Adam
Inner-loop learning rate ~ 0.001 — 0.01 0.01
L2 weight penalty le-5—1e-3 le-5
Number of Epochs 40 - 60 50
Batch Size 20, 40, 50, 100 50

Table 1: Hyperparameter setting for training a 2-layer, 100-wide feedforward network to obtain

ground-truth performance in Experiment 4.1}

Hyperparameter Search Range Final
Setting
Inner-loop Optimizer N/A Adam
Motif-network input size 10 10
Motif-network output size 10 10
Motif-network hidden size 1,3,5 1
Synthetic training samples 10, 20 10
Inner-loop learning rate 0.001 —0.01 0.01
Inner-loop L2 penalty le-5 —1e-3 le-5
Inner-loop training steps 200, 250 250
Outer-loop Optimizer N/A Adam
Outer-loop learning rate 0.01 - 0.05 0.05
Outer-loop learning rate decay 0.4 - 0.8 0.4
Outer-loop L2 penalty le-5—1e-3 le-5
Outer-loop training steps 20, 40, 60 60

Table 2: Hyperparameter setting for Petri dish training and inference in Experiment .1} Because
the number of synthetic training samples is small (20), they are used in a single batch for Petri dish
inner-loop training. The number of synthetic training samples is the same as the number of synthetic

validation samples.

At the beginning of Petri dish training, both the motif-networks weights and the synthetic train-
ing/validation data are initialized to random values (drawn from normal distribution). The relative
performance of motif-networks after inner-loop training on such random synthetic data is shown in
Figure 4. This plot highlights that motif-network training extracts useful prior information about the

corresponding motifs.

0‘..‘.
2 *00s,
‘0:
g W‘“"‘“‘“

* *

- o0
. I M .
g . : ’0""
3 e,
1% *
< 0 . ° "‘0:‘“.'

* La0)
2 . - ety
N o ‘e oso,
E 1 * R o * n“““” N
*
= R4 “"000.,.“
2 o
o * ‘.0
4
.o’ —4— Ground-truth performance of 2-layer, 100 wide MNIST network
‘o’ 4+ Synthetic Petri Dish Model Predicted Performance
- & .
3 oy —4— Neural Network Model Predicted Performance

0.00 0.25

0.50 0.75 1.00 1.25

Sigmoid Slope Value

1.50 1.75 2.00

Figure 4: Relative performance of motif-networks with random synthetic data. The green curve
shows the performance of motif-networks after inner-loop training on random data. This plot is
similar to Figure [T]except that there is no Petri dish outer-loop training in this case.

12

Implementation Details: As described in Section [3} during Petri dish training, the motif-networks
are independently trained and evaluated. Such independent training and evaluation is usually achieved
by distributing network training on GPUs. However, because the motif-networks are very small (with
only 22 parameters in each) and they share the same synthetic data, their training can be parallelized
by a simple trick. The individual motif-networks can be combined to create a single super-network.
With appropriate masking connections that prevent any forward and backward propagation across
motif-networks within a super-network, we can ensure that all the motif-networks are independently
trained at the same time during the super-network training. This parallelization trick allows us to
carry out Petri dish training and inference on a basic MacBook CPU very quickly.

A.3.3 Setup for NN-based model training

The training and validation data for the NN-based model is exactly the same as the one used for
Petri dish i.e. a set of 30 ground-truth points, where each point is a tuple of sigmoid slope and the
validation accuracy of the corresponding ground-truth MNIST network. Similarly to the Petri dish,
the NN-based model is trained to predict the normalized ground-truth performance (see Outer-loop
training in Section [3). However, unlike Petri dish that trains and evaluates the motif (i.e. sigmoid
slope) in a synthetic setting, the NN-based model takes the real-valued slope directly as its input. A
mean squared error is computed between the NN predicted output and the normalized ground-truth
performance. Hyperparameter search range and their final selected values are listed in Table 3]

Hyperparameter Search Range Final Setting
Optimizer N/A Adam
Network hidden size 5,10, 15, 20 10
Initial Learning rate 0.001 -0.01 0.01
Learning rate decay 0.8-0.99 0.97
Learning rate decay steps 50-120 100
L2 weight penalty le-5—1e-3 le-4
Number of training steps 100, 150, 200 150
Batch Size 15 15

Table 3: Hyperparameter setting for training the NN-based performance prediction model in Experi-

ment 4]

A.4 Experiment Setup for Recurrent Cell Architecture Search

This section provides further details on experiment[.2] The recurrent cell design is the motif in this
experiment.

A.4.1 Setup for Ground-truth Evaluation

Since NAO [Luo et al., 2018] is used as a baseline method for our experiments, the ground-truth
training and evaluation procedure outlined in that paper is also followed here. The final test evaluation
of the best found cell (output of Algorithm|I)) is also carried out using the setting described in the
NAO paper.

A4.2 Setup for Petri dish Training and Validation

The hyperparameter selection procedure follows the same template as described in Section[A.2] A set
of 40 randomly selected cells are evaluated for their ground-truth performance. These 40 ground-truth
points are split into two equal parts to create training (20) and validation data-set (20) for Petri dish
hyperparameter selection. Hyperparameter search range and their final selected values are listed in
Table

Implementation Details: The parallelization trick of combining multiple motif-networks into a
single super-network as described in Appendix[A.3.2] is also utilized here as well. Experiment [4.1]
required only a single NAS iteration i.e. training Petri dish with a fixed number of training motifs
(and their corresponding ground-truth values) and then predicting the performance of test motifs.
Unlike Experiment [4.1] in Experiment[4.2] the number of training motifs increase with additional
ground-truth evaluations in each NAS iteration. For example, at the end of three such NAS iterations,
there are 100 training motifs that can be utilized for Petri dish training. A growing number of
motif-networks during Petri dish training could require further hyperparameter tuning. To avoid such

13

Hyperparameter Search Range Final

Set-

ting
Inner-loop Optimizer N/A Adam
Motif-network input size 10 10
Motif-network output size 10 10
Motif-network hidden size 1,3,5 3
Synthetic training size 10, 20 20
Inner-loop learning rate 0.001 - 0.01 0.01
Inner-loop L2 penalty le-5—1e-3 le-5
Inner-loop training steps 50, 100 50
Outer-loop Optimizer N/A Adam
Outer-loop learning rate 0.01-2.5 2.0
Outer-loop learning rate decay 0.4 —0.8 0.5
Outer-loop L2 penalty le-6 — 1e-3 Se-5
Outer-loop training steps 100, 200, 300 200

Table 4: Hyperparameter setting for Petri dish training and inference in Experiment[4.2]

fine-tuning, the total number of motif-network instances during Petri dish training is kept fixed at 40
(thereby also limiting the size of the super-network). During each outer-loop training step, a new
batch of 40 motif-networks are randomly sampled from the full-set of available motif-networks.

A.4.3 Setup for NAO and Random Search

In Experiment 4.2} two variants of NAO are evaluated in limited resource setting — NAO with Reduced
data (red-curve in Figure [3) and Synthetic Petri Dish-NAO (green curve in Figure[3)). For both the
variants, the NAO model is trained with the same code and hyperparameter setting as in the published
work [[Luo et al.l 2018].

Two random search (RS) variants are evaluated — Synthetic Petri Dish with RS (blue curve in FigureE])
and RS with partial evaluation (black curve in Figure[3). The key difference between the two variants
is that while the former trains small motif-networks with synthetic data to quickly estimate motif
performance, the latter trains full-sized networks with randomly sub-sampled real data. For a fair
comparison, the number of training steps and the size of the data in each variant is kept the same.
In both the variants, random mutations are applied to generate new motifs. In each NAS iteration,
the top 20 motifs (with the best ground-truth values) are mutated to generate 100 new motifs. Each
motif is represented as a fixed-size string of numbers that encode the cell connectivity and the types
of non-linearity within the cell. During the mutation of a motif, every location within its string is
modified with a probability of 0.05.

The best found cell using the Synthetic Petri Dish-NAO method has a test perplexity of 57.1 and is
shown in Figure 5.

14

Figure 5: Best Cell found by Synthetic Petri Dish-NAO method.

15

	Introduction
	Related Work
	Methods
	Training the Synthetic Petri Dish
	Predicting Performance with the Trained Petri Dish
	Combining Architecture Search with the Synthetic Petri Dish

	Experiments
	Searching for the Optimal Slope for Sigmoidal Activation Functions
	Architecture Search for Recurrent Cells

	Discussion and Conclusions
	Appendix
	Combining Synthetic Petri Dish with NAS
	Petri dish Hyperparameter Selection Procedure
	Experimental Setup for Optimal Sigmoid Slope Search
	Setup for Ground-truth Training
	Setup for Petri dish Training and Validation
	Setup for NN-based model training

	Experiment Setup for Recurrent Cell Architecture Search
	Setup for Ground-truth Evaluation
	Setup for Petri dish Training and Validation
	Setup for NAO and Random Search

