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Abstract

Effective planning in model-based reinforcement learning (MBRL) and model-
predictive control (MPC) relies on the accuracy of the learned dynamics model.
In many instances of MBRL and MPC, this model is assumed to be stationary and
is periodically re-trained from scratch on state transition experience collected from
the beginning of environment interactions. This implies that the time required to
train the dynamics model – and the pause required between plan executions –
grows linearly with the size of the collected experience. We argue that this is too
slow for lifelong robot learning and propose HyperCRL, a method that continually
learns the encountered dynamics in a sequence of tasks using task-conditional
hypernetworks. Our method has three main attributes: first, it enables constant-
time dynamics learning sessions between planning and only needs to store the
most recent fixed-size portion of the state transition experience; second, it uses
fixed-capacity hypernetworks to represent non-stationary and task-aware dynam-
ics; third, it outperforms existing continual learning alternatives that rely on fixed-
capacity networks, and does competitively with baselines that remember an ever
increasing coreset of past experience. We show that HyperCRL is effective in con-
tinual model-based reinforcement learning in robot locomotion and manipulation
scenarios, such as tasks involving pushing and door opening. Our project website
with videos is at this link rvl.cs.toronto.edu/blog/2020/hypercrl/

1 Introduction

Figure 1: Overview of our proposed solution

Lifelong model-based robot learning
is predicated upon continual adapta-
tion to the dynamics of new tasks.
For example, robots need to learn to
manipulate unseen objects with vari-
ous mass distributions, walk on new
types of terrains with different fric-
tion, elasticity, and other physical
properties, or even learn to adapt to
different tasks, such as walking, run-
ning, or climbing stairs. This presents
at least two challenges for many model-based reinforcement learning (MBRL) and model-predictive
control (MPC) formulations, which typically comprise of a dynamics learning phase followed by a
planning/policy optimization and execution phase. First, these methods are not scalable because
the time required to train the dynamics model grows linearly with the size of the collected experi-
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ence. Second, as the robot learner encounters and adapts to new tasks, it has to avoid catastrophic
forgetting of the dynamics of old tasks.

In this work, we propose to extend the task-aware continual learning approach based on hypernet-
works in [1] to adapt to changing environment dynamics and to address the scalability and catas-
trophic forgetting challenges mentioned above in a reinforcement learning setting. We use task-
conditional hypernetworks, which are neural network models that accept a learned task encoding as
an input, and output the weights of another (target) network. In our case, the output is the dynam-
ics model for that task. No additional information other than task transition boundary is needed.
We show that continual learning with hypernetworks leads to effective model-based reinforcement
learning, while having constant-time dynamics model updates and preventing catastrophic forget-
ting.

We consider the setting where task boundaries are known in order to simplify the problem, although
there are continual learning methods that have addressed the task-agnostic setting using Bayesian
non-parametric methods [2]. In addition, we focus on fixed-capacity hypernetworks and target net-
works that can handle a sequence of tasks without adding new neurons or layers to the network,
unlike many related works [3, 4] in which every new task adds capacity to the dynamics model. We
argue that the fixed-capacity setting, together with the constant-time dynamics learning session, is
more realistic and scalable for lifelong robot learning applications compared to approaches in which
training time or the size of the weights scale linearly with the size of collected experience.

Our work makes the following contributions: we show that task-aware continual learning with hy-
pernetworks is an effective and practical way to adapt to new tasks and changing dynamics for
model-based reinforcement learning without keeping state transitions from old tasks nor adding ca-
pacity to the dynamics model. We evaluate our method on locomotion and manipulation scenarios,
where we show that our method outperforms related continual learning baselines.

2 Related Works

Continual Learning of Neural Networks Continual learning studies the problem of incrementally
learning from a sequential stream of data with only a small portion of the data available at once [5].
A simple yet effective approach is finetuning, which directly tunes the trained source task network
on the target task [6]. The efficacy of this approach for continual learning suffers from the well-
established phenomenon of catastrophic forgetting [4]. Sequential Bayesian posterior updates are a
principled way to perform continual learning and naturally avoids the forgetting problem since the
exact posterior fully incorporates all previous data but in practice approximations have to be made
that may be prone to forgetting. Elastic Weight Consolidation (EWC) uses a Laplace approximation
to the posterior, storing previous tasks’ empirical fisher matrices and regularizing future task weight
deviations under their induced norms [7]. Other works have also employed variational mean-field
approximations [8] or block-diagonal Kronecker factored Laplace approximations [9]. Synaptic
Intelligence (SI) forgoes an obvious approximate Bayesian interpretation but operates similarly to
EWC in that it computes a relative parameter importance measure, but through a linear approxi-
mation to the contribution in loss reduction due to each parameter on previous tasks [10]. Coreset
methods prevent catastrophic forgetting by choosing and storing a significantly smaller subset of
the previous task’s data, which is used to rehearse the model during or after finetuning [11, 12, 13].
Similarly, the inducing points used in sparse Gaussian Process (GP) formulations, which can be seen
as a type of coreset, has been used for continual learning [14, 15]. Another type of approach learns
separate task-specific network components. The most common version of this are multi-head net-
works that learn and switch between separate output layers depending on the task [16]. Progressive
Neural Networks (PNN) [4] are an extreme version of this approach, in which an entirely new copy
of the network is appended for each task, thereby eliminating any forgetting. These methods can
incur significant memory and compute cost especially for larger models and many tasks.

Model-based RL Model-based reinforcement learning approaches incorporate model learning of
the environment in solving the control task. Traditionally, the model is trained to approximate the
stationary dynamics and/or reward of the environment from all collected samples. Various choices
for the model have been proposed. Many non-parametric models, such as commonly used GPs, rely
on storing and making inferences with past data [17], although in many cases the amount of data
needed to be stored can be drastically reduced through sparse variational inference [18]. Nonlinear
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parametric models typically do not admit efficient sequential update rules and therefore usually
train on all past data as well [19]. Typically, the trained model is then used to simulate imagined
trajectories, either for the purpose of online planning [20, 21] or as training data for an amortized
policy [22]. In non-stationary environments, the dynamics can change over time. In this setting,
a lot of works focus on quickly adapting to the change in dynamics to minimize online regret, as
opposed to retaining performance on previously experienced dynamics [23, 24, 25]. Meta-learning
is a popular tool in this paradigm where a global dynamics model is “meta-trained” to quickly
adapt to the true online dynamics from only a few samples. However, the meta-learning process
typically requires updating the meta-model with data from a diverse set of dynamics that is obtained
by storing previous experiences in a buffer and/or being able to simultaneously interact with many
different environments [26].

Relationship to Meta-Learning Our work is different from meta-learning approaches in MBRL
like [27, 28] in two ways. First, we focus on preventing catastrophic forgetting and do not explicitly
train a model prior across multiple tasks for fast adaptation. This means that we do not need to
design a set of tasks for meta-training and in principle, our work can continuously learn to perform
new tasks from scratch. Second, we do not require the use of a replay buffer that grows linearly
with the number of tasks or total length of collected state-transition pairs. We emphasize that this is
consistent with the theme of continual learning, where storing past data is limited.

Continual RL Memory-efficient continual learning methods in the reinforcement learning setting
have also been proposed. PNN was used in an on-policy actor-critic method and was demonstrated
on sequential discrete action Atari games. The authors of [29] build on top of PNN and continual
policy compression methods [30] by compressing the extended model from PNN into a fixed size
network after each task. For the compression stage, they propose a more scalable online EWC algo-
rithm that eschews the linear cost of storing past fisher matrices. The use of coresets has also been
explored in this setting [31]. In [27], a mixture model of separate task-specific neural networks is
used for the environment model that requires adding a new model each time a task is instantiated.
A similar approach was also demonstrated using a mixture of GPs using an online clustering algo-
rithm [32]. Our work is also related to MPC interpretations as a reduction to online learning [33].

Robust and Adaptive Control Existing literature on control theory provides many related classes of
approaches that handle changes in dynamics: adaptive control methods handle unknown parameters
of a dynamics model by estimating them over time so as to execute a given trajectory, and robust
control methods provide stability guarantees as long as the parameter or model disturbance is within
bounds [34]. The setting we study in this work differs in that we learn the dynamics model from
scratch, without assuming a reference model, and it may change over tasks without imposing any
bounds on particular parameters.

3 Preliminaries

Hypernetworks for Continual Learning A hypernetwork [35, 36] is a network that generates
the weights of another neural network. The hypernetwork HΘ(e) = θ with weights Θ can
be conditioned on an embedding vector e to output the weights θ of the main (target) network
fθ(x) = f(x; θ) = f(x;HΘ(e)) by varying the embedding vector e. The hypernetwork is typically
smaller with respect to the number of trainable parameters in comparison to the main network. Hy-
pernetworks have been shown to be useful in the continual learning setting [1] for classification and
generative models. This has been shown to alleviate some of the issues of catastrophic forgetting.
They have also been used to enable gradient-based hyperparameter optimization [37].

Planning with CEM and MPC The Cross-Entropy Method (CEM) [38] is a widely used online
planning algorithm that samples action sequences from a time-evolving distribution which is usu-
ally considered to be a diagonal Gaussian a1:h ∼ N (µ1:h, diag(σ2

1:h)), where h is the planning
horizon. Action sequences are iteratively re-sampled and evaluated under the currently learned dy-
namics model, and the sampling distribution parameters µ1:h, σ1:h are re-fitted to the top percentile
of trajectories. CEM for planning in MBRL has been successfully used in a number of previous
approaches [20, 21], as it alleviates exploitation of model bias compared to purely gradient based
optimizations [39] and can better adapt to varying dynamics as compared to fully amortized poli-
cies [22].
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4 The Proposed Approach
4.1 Problem Setting and Method Overview
We consider the following problem setting: A robot interacts with the environment to solve a
sequence of T goal-directed tasks, each of which brings about different dynamics while having the
same state-space S and action spaceA. The robot is exposed to the tasks sequentially online without
revisiting data collected in a previous task.

The robot also has finite memory and is not allowed to maintain a full history of state transitions
for the purpose of re-training. Since the distribution of tasks changes over time and the agent does
not know about it a priori, it must continually adapt to the streaming data of observations that it
encounters, while trying to solve each task. The robot knows when a task switch occurs.

Algorithm 1: Continual Reinforcement Learning via Hypernetworks (HyperCRL)
1: Input: T tasks, each with its own dynamics S ×A → S ′, reward r(s, a). Learning rates αΘ,
αe, and planning horizon h.

2: Randomly initialize hypernetwork weights Θ1

3: for task t = 1, 2, . . . , T do
4: Initialize task-specific replay buffer Dt = {}
5: Randomly initialize task embedding et
6: Collect P episodes of trajectories τ using a random policy and add it to Dt
7: for episode m = 1, 2, . . . , M do
8: (Optionally) Reset the environment; Observe s0

9: Generate target network weights θt = HΘt(et)
10: // The dynamics model for the current episode is fθt(·)
11: for step k = 1, 2, . . . , K do
12: Optimize action sequence ak:k+h using CEM with fθt(·) and known reward
13: Execute first action ak, observe next state sk+1, add (sk, ak, sk+1) to Dt
14: end for
15: // Update hypernetwork and task embedding
16: for s = 1, 2, . . . , S do
17: Sample a batch B of state-action pairs (sk, ak, sk+1) from Dt and compute Lt
18: Θt ← Θt − αΘ∇ΘtLt(Θt, et)
19: et ← et − αe∇etLt(Θt, et)
20: end for
21: end for
22: Θt+1 = Θt

23: end for

We consider the solution setting of MBRL with a learned dynamics model, the parameters of which
are inferred through a task-conditioned hypernetwork. Given learned task embeddings et and param-
eters Θt of the hypernetwork H(·), we infer parameters θt of the dynamics neural network fθt(·).
Using this dynamics model, we perform CEM optimization to generate action sequences and exe-
cute them in the environment for K time-steps with MPC. We store the observed transitions in the
replay dataset and update the parameters of the hypernetwork Θt and task-embeddings et (off-policy
optimization). We repeat this for M episodes per task, and for each of the T tasks sequentially.

4.2 Training Procedure
Dynamics Learning The learned dynamics model is a feed-forward neural network whose param-
eters vary across tasks. One way to learn a dynamics network fθ(·) across tasks is to update it
sequentially as training progresses. However, since our problem setting is such that the agent is not
allowed to retain state-transition data from previous tasks in the replay buffer, adapting the weights
of a single network sequentially across tasks is likely to lead to catastrophic forgetting [1]. In order
to alleviate issues of catastrophic forgetting while trying to adapt the weights of the network, we
learn a hypernetwork that takes task embeddings as input, and outputs parameters for the dynamics
network corresponding to every task, learning different dynamics networks fθt(·) for each task t.

We assume that the agent has finite memory and does not have access to state-transition data across
tasks. So, the task-specific replay buffer Dt is reset at the start of every task t. For the current
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episode, the agent generates a dynamics network fθt using θt = HΘt(et). Then, for k = 1...K
timesteps and planning horizon h, the agent optimizes action sequences ak:k+h using CEM, and
executes the first action ak (MPC). Dt is augmented by a tuple (sk, ak, sk+1), where sk is the
current state, ak is the executed action, and sk+1 is the next observed state under task t.

The parameters Θt of the hypernetwork and the task embeddings et are updated by backpropagating
gradients with respect to the sum of a dynamics loss Ldyn and a regularization term. We define
the dynamics loss as Ldyn(Θt, et) =

∑
Dt
||ŝk+1 − sk+1||2, where the predicted next states are

ŝk+1 = fθt(sk, ak) and θt = HΘt
(et). In practice, we infer the difference ∆k+1 through the

dynamics network (∆k+1 = fθt(sk, ak)) such that ŝk+1 = sk + ∆k+1 for stable training. In
addition, inputs to the fθt network are normalized, following the procedure in previous works [20].
Similarly, a new et is initialized at the start of every task and updated every episode during the task
by gradient descent. Older task embeddings (e1:t−1) are kept fixed.

Regularizing the Hypernetwork To alleviate catastrophic forgetting, we regularize the output of
the hypernetwork for all previous task embeddings e1:t−1. After training for task t − 1, a snapshot
of the hypernetwork weights is saved as Θt−1. For each of the past tasks i = 1...t− 1, we use a reg-
ularization loss to keep the outputs of the snapshot HΘt−1

(ei) and the current output HΘt
(ei). This

approach sidesteps the need to store all past data across tasks, preserves the predictive performance
of dynamic networks fθt , and only requires a single point in the weight space (a copy of the hyper-
network) to be stored. The task embeddings are differentiable vectors learned along with parameters
of the hypernetwork. The overall loss function for updating Θt and et is given by the sum of the
dynamics loss Ldyn(·), which is evaluated on the data collected from task t and the regularization
term Lreg(·):

Lt(Θt, et) = Ldyn(Θt, et) + Lreg(Θt−1,Θt, e1:t−1) (1)

= Ldyn(Θt, et) +
βreg

t− 1

t−1∑
i=1

‖HΘt−1(ei)−HΘt(ei)‖22 (2)

The planning objective for CEM optimization of action sequences is given by the sum of rewards
obtained by executing the sequence of actions ak:k+h under the learned dynamics model fθt(·) for
the task. The reward function r(s, a) is assumed to be known, but nothing precludes learning it from
data under our current framework.

5 Experiments
We perform multiple robot simulation experiments to answer the following questions: (a) How does
HyperCRL compare with existing continual learning baselines in terms of overall performance across
tasks? (b) How effective is HyperCRL in preventing catastrophic forgetting across tasks?

5.1 Pushing a block of non-uniform mass
First, we look at an intuitively simple experiment simulated using Surreal Robotics Suite [40], in
which a Panda robot tries to push a non-uniform-density block across the table (Figure 2). The
objective is to push the block to the goal position while maintaining its initial orientation. We
vary the densities of the left and right parts of the block across different tasks (T = 5), changing

�

�

�

Initial Goal Fail

(a) Initial and goal poses of the block.

Task Green Blue
1 500 500
2 100 500
3 500 100
4 500 250
5 250 500

(b) Density of the block in kg/m3

Figure 2: Setup of Pusher Environment. The robot needs to solve 5 pushing tasks sequentially, each involving
a block of different mass distribution. The objective is to push the block to the goal pose (indicated by the dotted
frame) without changing its orientation.
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Figure 3: Reward on Pusher Environment. Shown are episodic rewards evaluated during training. Results are
averaged across four random seeds, and the shaded areas represent one standard deviation. Each task is trained
for 4k steps, summing to 20k steps in total. Vertical dotted lines indicate task switches. The bottom-right
subplot shows the average reward across all task ≤ t seen so far.

the center of mass and moment of inertia. The robot needs to learn to maneuver the position of its
end-effector on the side of the block to correct for orientation deviations while pushing the block
forward. Each episode is 100-step long, which is 10 seconds of simulator time. At the start of each
episode, we initialize the robot end-effector to a fixed position behind the block.

The state is represented as a concatenated vector (xee, x1, x2, x3, x4). Here (x1, x2, x3, x4) rep-
resents the xy positions of the four corners and xee the xy position of the end-effector with re-
spect to the block. The input action vector, δxee, specifies a desired offset with respect to the
current position xee. The robot is actuated using an operational space controller [41]. It cal-
culates the joint torques given an action that is updated at 10Hz. The reward function is set
to minimize the sum of distances between the current and goal pose of the block following
r(s, a) =

∑4
i=1(1 − tanh(10 ||xi − gi||)) − 0.25||a||, where gi is the goal position of the ith

corner. The reward function consists of one term per corner within the range [0, 1], and to maximize
reward the robot should minimize the corner distances to the goal pose.

Baselines We compare the hypernetwork to the following baselines: (i) Multi-task learning with
access to a buffer of all data from all previous tasks (an oracle) (ii) Coreset that remembers one
percent of the state-action transition data per task, sampled randomly (iii) Synaptic Intelligence [10]
(iv) Elastic Weight Consolidation [7] (v) Fine-tuning, where we optimize fθt(·) on each task’s data
without regularization. All the baseline models resemble the target model in our hypernetwork setup,

Table 1: Perfor-
mance Retention on
Pusher and Door
Envs. We measure
performance retained
at the end of training
all 5 tasks compared
to the end of training
on task t. Results
show the mean and
one std. deviation,
evaluated across 4
seeds and 10 episodes
per seed. Greater than
100 indicates positive
backward transfer,
otherwise it indicates
forgetting.

% Retention in terms of Reward (Pusher)
Task 1 2 3 4 Average
Multi-task (Oracle) 142 ± 74 91 ± 25 96 ± 9 91 ± 11 106 ± 20
HyperCRL 99 ± 10 107 ± 9 98 ± 13 103 ± 15 102 ± 6
SI (c = 0.1) 40 ± 54 88 ± 21 95 ± 21 92 ± 14 79 ± 16
EWC (λ = 105) 7 ± 15 13 ± 8 6 ± 8 0 ± 3 4 ± 5
Coreset (1% Data) 87 ± 66 32 ± 46 39 ± 13 61 ± 43 55 ± 23
Finetuning 0 ± 2 -2 ± 6 1 ± 3 13 ± 16 3 ± 4

% Retention in terms of Normalized Reward (Door, see Figure 5)
Task 1 2 3 4 Average
Multi-task (Oracle) 37 ± 70 81 ± 88 59 ± 60 93 ± 129 68 ± 45
HyperCRL 113 ± 75 100 ± 76 99 ± 36 86 ± 68 100 ± 26
SI (c = 0.1) -17 ± 27 11 ± 61 6 ± 37 16 ± 60 4 ± 24
EWC (λ = 105) -6 ± 33 17 ± 59 4 ± 25 16 ± 50 7 ± 22
Coreset (1% Data) -5 ± 28 26 ± 53 21 ± 34 45 ± 68 22 ± 24
Finetuning -14 ± 28 11 ± 58 3 ± 23 16 ± 65 4 ± 23
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Opened

Initial

Pull Handle Round Handle Lever Handle

Figure 4: Setup of Door En-
vironment. For round and
lever handles, the robot must
first rotate the handle clock-
wise before pulling the door
open. Additionally, we intro-
duce two more tasks by flip-
ping the rotational direction
to counter-clockwise for the
round and lever handles.

except the multi-head output layer with one head per task. For coreset or multi-task learning, an
additional batch of past data is sampled from the coreset or oracle every update step, and contributes
to the total dynamics loss.

Results HyperCRL is able to learn to push all 5 of the blocks across the table with minimal forgetting
(Table 1), and even shows signs of positive backward transfer. The average performance of our
method is on par with the multitask learning baseline (Figure 3), which has access to the entire
history of data. HyperCRL also outperforms other continual learning baselines, either regularization-
based (SI, EWC), or replay-based (Coreset). Simple finetuning, however, catastrophically forgets
and is unable to perform pushing for all 5 types of block at the end.

5.2 Door Opening
Next, we experiment on a more complex task to better demonstrate the flexibility of HyperCRL. We
choose a door opening experiment, where the Panda robot has to open doors with different types of
handles (Figure 4). Unlike the pushing example, the dynamic switches between tasks are much more
discontinuous and the tasks require different motions to solve, due to the rotational joints imposed
by some of the handles. A total of T = 5 tasks need to be solved sequentially, each involving a
different handle type. Tasks 2 and 4 (similarily tasks 3 and 5) both have a round (lever) handle, but
with different turning directions. The environment is modified from the DoorGym environment [42]
and simulated in the Surreal Robotics Suite.

We model the environment as follow: (i) φd represents the angle of the door (ii) φk represents the
angle of the door handle (iii) x ∈ R3 is the position, q ∈ R4 is the quaternion representation of the
rotation of the robot end-effector with respect to the handle (iv) d ∈ R is the state of the gripper
(v) qj ∈ R7 is the angle of the joints of the Panda arm. Concatenating all the above elements
and their time derivative gives the full state vector (φd, φ̇d, φk, φ̇k, x, q, d, qj , q̇j) ∈ R26. Similar
to the pushing environment, the robot is actuated with operational space control updated at 10Hz.
The input action is a vector (δx, δq, δd), which specifies a translation and rotational movement of
the end-effector in the world frame. Finally, the reward function has five components as follows:
r(s, a) = −||x||2− log(||x||2 + ε)− ||qo||2 + 50φd + 20φk, where qo is the difference between the
orientation of the current end-effector and the required pose for opening the door.

Results HyperCRL outperforms all continual learning baselines on the door opening task, and even
the multi-task baseline with oracle. Figure 5 shows the learning curves of all our evaluated methods,
compared to a single-task baseline trained from scratch on each task. HyperCRL shows high reward
across all tasks and virtually sees no performance degradation in terms of reward (Table 1).

Method Final Average
Reward

HyperCRL-MT 1.25 ± 0.39
HyperCRL 1.08 ± 0.31
Multitask (Oracle) 0.73 ± 0.36

Table 2: Final performance comparison for
the door opening task. Results are normalized
episodic reward, averaged over all tasks.

One observation here is that the multi-head multitask
baseline underperforms HyperCRL (Figure 5). We hy-
pothesize that the hypernetwork architecture might be
more effective for learning the task since it allows mod-
elling multiple distinct dynamics in one model. We con-
sider another multi-task baseline, HyperCRL-MT, that
shares the same architecture of the hypernetwork used
in HyperCRL, but is trained without regularization and
has access to the entire replay buffer similar to the mul-
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Figure 5: Normalized Reward on Door Environment during training. Results are averaged across four
random seeds, and the error bars represent one standard deviation. Each task is trained for 60k steps, totaling
300k steps. The reward is normalized with respect to a model trained from scratch separately on each task.

titask baseline. We show that this baseline outperforms the multitask baseline while sharing the same
training procedure, in Table 2. Thus, we infer that the hypernetwork architecture is what makes the
difference.

5.3 Training details
For both experiments, we model the target network as a multi-layer perceptron (MLP) with two
hidden layers (four for door opening) of 200 neurons each and ReLU non-linearity. Each task em-
bedding is initialized as a 10d standard normal vector. The hypernetwork is also a MLP with two
hidden layers of 50 neurons each (256 neurons for door opening). The parameters of the hypernet-
work are initialized with the Xavier initialization [43]. We use Adam with a learning rate of 0.0001
to optimize Lt. During planning, we run CEM for 5 iterations to optimize the actions for a horizon
of h = 20 (10 for door opening) steps. Each iteration, we sample 500 (2000 for door opening) action
sequences to maximize the sum of rewards. For SI and EWC, we use implementations from [3].

6 Limitations and Future Work
While our proposed approach shows good results against the baselines we tested, there are many in-
teresting prospects for future work. First, better techniques to train hypernetworks will significantly
aid this line of work. Currently, the size of our hypernetwork is at least an order of magnitude larger
than the target network, since it directly outputs all the weights. Hypernetworks are often sensi-
tive to the choice of random seeds and architecture. Second, extending our method to image-based
RL environments is worth investigating, as it will enable higher-capacity target networks. Finally,
HyperCRL is not task agnostic, nor can it automatically detect task switching that happens contin-
uously with no clear task boundaries. A possible direction is to use probabilistic inference models
(i.e. Bayesian non-parametrics [2]) or changepoint detection methods to perform task identification.

7 Conclusion
In this paper we described HyperCRL, a task-aware method for continual model-based reinforcement
learning using hypernetworks. In all of our experiments, we have demonstrated that HyperCRL con-
sistently outperforms alternative continual learning baselines in terms of overall performance at the
end of training, as well as in terms of retaining performance on previous tasks. By allowing the en-
tire network to change between tasks, rather than just the output head layer of the dynamics network,
HyperCRL is more effective at accurately representing different dynamics, even with significant dis-
continuity between them, while only requiring a fixed-size hypernetwork and constant time updates
to generate task-conditional dynamics for planning.
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Appendix
A Additional Test Results
The objective of a continual learning algorithm is to continuously learn new knowledge on the cur-
rent task, while maintaining its performance on past tasks. To achieve this, there are two components
that needs to be quantified: 1) backward transfer and 2) forward transfer. We formally define
them in the context of continual reinforcement learning as follow:

Backward Transfer First, let ri,j denote the test episodic (normalized) reward on task i after train-
ing on task j. Retention for each task is then given by fi = ri,T /ri,i for all i < T . The average
retention is f = 1

T−1

∑T−1
i=1 fi. If this measure is larger than 100%, it indicates positive backward

transfer, which means the performance on previously seen tasks benefit from more recent expe-
riences. If this measure of retention is lower than 100%, this means that the robot forgets some
knowledge about older tasks and we call this negative backward transfer or forgetting.

Forward Transfer Forward Transfer measures how the robot adapts to new tasks after training on
older task(s). Specifically, let r∗i denote the test episodic reward on task i for a single-task model
trained from scratch using CEM planning. This single-task model serves as a baseline for perfor-
mance. We then calculate forward transfer as Ii = ri,i/r

∗
i , and the average is I = 1

T−1

∑T
i=2 Ii. If

this measure is greater than 100%, it indicates positive forward transfer, which means that the robot
benefits from older experiences when learning a new task. If this measure is lower than 100%, it
means that the robot is unable to take advantage of past experience to solve new tasks, also known
as negative forward transfer.

To better illustrate the continual learning capability of HyperCRL, we provide an evaluation of the
positive transfer capabilities defined above. Note that HyperCRL is not explicitly designed for
improving forward transfer or fast adaptation. We show the result on both the pusher and door
opening experiments in Table 3.

In the pusher experiment, HyperCRL achieves an average forward transfer of 100 ± 11%. This
means that our proposed method can adapt to new tasks and reach similar level of performances
compared to a single-task baseline trained from scratch. In the door experiment, HyperCRL beats
all baseline in terms of forward transferring capabilities. A note of caution is that some results have
very large variance across different random seeds. Better techniques to train hypernetworks or plan
with learned dynamics model would improve the reliability of our approach, and we leave this to
future work.

B Additional Experiment on HalfCheetah

We ran another experiment using HyperCRL following the environment setup from [44], changing
the body of the robot. We modified body size (torso, leg) on the HalfCheetah environment to create

Table 3: Forward
Transfer on Pusher
and Door Envi-
ronment. Shown
is performance at
the end of training
on task t compared
to training a single-
task baseline from
scratch. Results show
the mean and one
standard deviation,
evaluated across four
seeds and 10 episodes
per seed. Greater than
100 indicates positive
forward transfer.

% Forward Transfer in terms of Task Reward (Pusher)
Task 2 3 4 5 Average
Multi-task (Oracle) 118 ± 23 106 ± 12 105 ± 9 110 ± 21 109 ± 9
HyperCRL 127 ± 22 99 ± 12 94 ± 12 107 ± 20 107 ± 9
SI (c = 0.1) 114 ± 26 84 ± 13 98 ± 15 101 ± 20 99 ± 10
EWC (λ = 105) 125 ± 23 109 ± 11 105 ± 10 110 ± 21 112 ± 9
Coreset 126 ± 20 99 ± 13 90 ± 17 106 ± 21 105 ± 9
Finetuning 138 ± 22 108 ± 9 94 ± 17 107 ± 23 112 ± 9

% Forward Transfer in terms Task Normalized Reward (Door)
Task 2 3 4 5 Average
Multi-task (Oracle) 103 ± 74 94 ± 34 122 ± 160 78 ± 78 96 ± 49
HyperCRL 106 ± 76 91 ± 31 168 ± 203 102 ± 67 117± 57
SI (c = 0.1) 69 ± 57 56 ± 40 107 ± 137 66 ± 66 75 ± 42
EWC (λ = 105) 71 ± 62 78 ± 32 125 ± 151 71 ± 61 86 ± 44
Coreset 94 ± 80 83 ± 34 113 ± 145 57 ± 68 84 ± 46
Finetuning 73 ± 83 90 ± 43 101 ± 145 83 ± 77 87 ± 47
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Figure 6: Performance on HalfCheetah Environment from [44]. Each task is trained for 100k steps, totaling
500k steps. Results are averaged across four random seeds, and shaded area marks one standard deviation.

a continual learning scenario with T = 5 tasks. Our method outperforms other continual learning
baselines (SI, EWC, coreset) and performs similarly to multi-task learning (Figure 6).

C More Training Details
In this section, we provide more details about the hyperparameters used during the experiments in
Table 4.

Table 4: Hyper-parameter values of the proposed algorithm HyperCRL for all the environments.
P M K S αH αe B βreg hnet non-linearity

Pusher 10 20 200 2000 0.0001 0.0001 100 0.05 ELU
Door 10 300 200 200 0.0001 0.0001 100 0.5 ReLU
Half Cheetah 10 100 1000 2000 0.0001 0.0001 100 0.05 ReLU
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