
A Appendix: Partial Variational Autoencoders

A.1 Partial Variational Autoencoders

For our experiments, we base our model on the Partial Variational Autoencoder (P-VAE) [20] - this
model combines a traditional variational autoencoder (VAE) model with a PointNet-style set encoder
[27], allowing it to efficiently encode and reconstruct partially observed data points. The P-VAE
is based on the observation that typically the features in a VAE are assumed to be conditionally
independent when conditioned on the latent variable z. That is,

p(x|z) =
∏
j

p(xj |z)

Then, given a data point x with observed features xO and unobserved features xU , we have that

p(xU |xO, z) = p(xU |z)

Hence, if we can infer a posterior distribution over z from the observed features, we can use this to
estimate p(xU |xO). The P-VAE infers a variational posterior distribution over z using an amortized
inference network (or encoder network) qθ(z|xO) and approximates the conditional data distribution
given a value of z using a decoder network pφ(xO,xU |z).
In our model, we extend the decoder to decode the value of a new feature xn by initialising an
additional subnetwork in the decoder which we term a decoder head, with parameters φn, to extend
its output dimension by one. In principal this head could be of any architecture which takes as input
the output of the shared layers of the decoder, but in practice we found that simply extending the
final layer of weights and biases to accommodate a new output dimension yielded good results while
remaining parameter-efficient as the number of output features grows.

A.2 Training P-VAEs

The P-VAE is trained to reconstruct observed features in the partially-observed data point, and in
the process learn to infer a variational posterior qθ(z|xO) over the latent variable z. The P-VAE is
given batches of data points where features from both the meta-train and meta-test sets are hidden
from the model. Additionally, each time a particular data point is input, some additional features are
also randomly hidden from the model using a Bernoulli mask, in order to ensure the model is robust
to different sparsity patterns in the data. The P-VAE is then trained by maximising the Evidence
Lower-Bound (ELBO) [21]:

log p(xO) ≥ log p(xO)−DKL(q(z|xO)||p(z|xO))
= Ez∼q(z|xO) [log p(xO,xU |z)]−DKL [q(z|xO)||p(z)]
= Lpartial(xO)
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Figure 6: k-shot learning performance on MovieLens-1M where features are arranged into training,
meta-training and meta-testing set chronologically by movie release data from oldest to newest.

B Appendix: Chronological Feature Ordering

Throughout our experiments training CHNs, we use random splits of each dataset’s features into
training, meta-training and meta-testing. While we do not believe that this represents information
leakage from future to past in an asymmetric way, we performed an additional experiment on
MovieLens-1M where the training, meta-training and meta-testing sets are arranged chronologically
by movie release date from oldest to newest. Figure 6 shows the results of this experiment. We
see that the overall performance is somewhat worse for all baselines (although this may simply be
random noise), but that the relative ordering of the baselines appears largely unchanged.
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C Appendix: Baselines

Here we provide additional details and results for the baselines used in our experiments.

C.1 Overview

We consider the following baselines for generating the new feature parameters θn = {wn, bn}. All
methods are applied to the same base trained P-VAE model to ensure a fair comparison.

• Random: Generate a random value for θn for each new decoder head using Xavier initialisation
for weights and 0 for biases.

• Mean Imputing: Set weights and biases to always predict the mean of the observed values for the
new feature in the context set, i.e. wn = 0 and b = σ−1

(
1
k

∑
i∈Cn x

(i)
n

)
.

• Mean Head Parameters: Generate the new head parameters θn as the mean of all of the head
parameters learned on the training set features.

• Mean Head Parameters (Matching Metadata): As above, but averaging only over parameters
of heads whose associated feature has metadata categories matching those of the new feature.

• k-Nearest Neighbour Head Parameters: Generate the new head parameters θn as the mean of
the head parameters of the k-nearest neighbour features in terms of Euclidean distance, where
column-wise mean imputing is used to fill in unobserved values.

• Train from Random: Initialize the new feature head parameters randomly, and then fine-tune
these parameters on the data in the context set Cn for a fixed number of epochs.

• MAML: We meta-learn an initialisation of θn using Model-Agnostic Meta Learning [4], where we
treat the prediction of each feature as a separate task and fine-tune these parameters on the context
set. In all experiments, we compare with the MAML baseline which has the best-performing
number of fine-tuning epochs. For full details, see Appendix C.

C.2 MAML

We adapt the Model-Agnostic Meta Learning [4] technique as a baseline. The decoder head parameters
θn are adapted using the MAML algorithm in the ‘meta-training’ stage. Each new feature X is
viewed as a separate MAML task, with some observed and unobserved values. We sample the tasks
in batches of size M and train the inner (a.k.a. fast) model over N steps. The inner model training
loss is the ELBO of the PVAE on the observations LXO

. The meta-model (a.k.a. the slow or outer
model) is trained by being given the context set observations, and computing a reconstruction loss
on the target set, L̂T ,C(fθ′ ,X ). The gradient for the meta-model update is taken over the batch
reconstruction losses mean. The full algorithm is detailed in Algorithm 1.
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Figure 7: MAML baseline performance comparison for {1, 2, 5, 10} fine-tuning epochs and with no
fine-tuning. Left plot shows RMSE (lower is better), center and right plots show AUROC (higher is
better).

Algorithm 1 Feature-wise Model-Agnostic Meta-Learning with PVAE

Input:
p(X ): distribution over features.
α, β: learning rate hyperparameters.
M : meta-batch size, N : number inner iterations.

Initialize θ
while not done do

Sample M features Xi ∼ p(X ).
for all Xi do
θi,0 ← θ
for j ← 0, N do

Evaluate ELBO gradient∇θi,jLXO
(fθi,j ,Xi) w.r.t. observations in K examples

Optimize inner model parameters: θi,j+1 ← θi,j −∇θi,jLXO
(fθi,j ,Xi)

end for
θ′i ← θi,N

end for
Evaluate gradient of mean reconstruction error∇θ 1

M

∑
Xi∼p(X ) L̂Ti,Ci(fθ′i ,Xi)

Optimize meta-model parameters: θ ← θ −∇θ 1
M

∑
Xi∼p(X ) L̂Ti,Ci(fθ′i ,Xi)

end while
Output: θ

Notably, since MAML aims to fit parameters that adapt quickly to new tasks, it allows for fine-tuning
at evaluation time, that is, training the model for several iterations from the MAML parameter
initialization. Here, we evaluate the model with and without fine-tuning.

In the MAML baseline experiments we use M = 4, N = 10, ADAM [14] with learning rate
α = β = 10−2 for inner and outer model optimization. The model fine-tuned performance is
evaluated over {1, 3, 5, 10} epochs and the best results are used. We make use of the higher order
optimization facilitated by the higher library [10] in the implementation of this baseline.

Figure 7 shows the performance of the MAML baseline for different numbers of fine-tuning epochs
and with no fine-tuning. As expected, the baseline with no fine-tuning is outperformed by those
where fine-tuning is employed. For the Neuropathic Pain and E-learning datasets, the increase in
the number of fine-tuning epochs corresponds to improvement in performance (greater AUROC),
whereas in case of MovieLens-1M, performance drops (RMSE increases) with longer fine-tuning,
particularly for the smaller context set sizes.

15



1 2 4 8 16 32
Context Set Size

1.0

1.1

1.2

1.3

1.4
M

et
a-

Te
st

 R
M

SE

MovieLens-1M

1 2 4 8 16 32
Context Set Size

0.475
0.500
0.525
0.550
0.575
0.600
0.625

M
et

a-
Te

st
 A

UC

Neuropathic Pain

1-Nearest Neighbour 5-Nearest Neighbours 10-Nearest Neighbours

1 2 4 8 16 32
Context Set Size

0.600
0.625
0.650
0.675
0.700
0.725
0.750

M
et

a-
Te

st
 A

UC

E-Learning

Figure 8: k-Nearest Neighbour Head Parameters baseline performance for k ∈ {1, 5, 10}. Context set
size here corresponds to the number of observed values used when determining the nearest neighbour
heads.
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Figure 9: Comparing the predictive performance when training decoder new head parameters in a
P-VAE on a range of context set sizes k, on the E-learning dataset (higher is better).

C.3 k-Nearest Neighbour Head Parameters

We consider k-Nearest Neighbour Head Parameters baselines for the values k ∈ {1, 5, 10}. Figure 8
shows the performance of this baseline for the different values of k across a range of context set sizes.
We expect that as k is increased further, and the number of head parameters averaged over grows,
the behaviour will approach that of the mean head parameter baselines. In the main text, 10-Nearest
Neighbours is used throughout, as it yields good performance in both the low and high-data regimes.

C.4 Fine-Tuning

In our experimental results, we show the performance of training the new decoder heads on their con-
text sets from randomly initialized parameters for 10 epochs, in order to provide a trade-off between
predictive accuracy and computational cost. In Figure 9a, we show the predictive performance of
the P-VAE on the meta-test set after training randomly initialized head parameters for an increasing
number of epochs, for a range of context set sizes k. We see that the performance improves with
training in all cases, with better performance achieved as the context set size k increases, and thus the
effect of over-fitting is lessened.

Furthermore, in Figure 9b, we perform the same experiment but instead initialising the heads with the
CHN parameters. We see that in all cases except k = 0 and k = 32, training by gradient descent leads
to a decrease in performance due to over-fitting, suggesting that the CHN has an implicit regularising
effect on the parameter initialisation. We note also that in all cases, the untrained CHN parameters
substantially outperform those trained from the random initialisation for all values of k, even after 25
training epochs, with many of the training curves appearing to approach convergence.
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Table 2: Hyperparameters and architecture details for the P-VAE and CHN used on each dataset.
Feed-forward neural networks are represented by a list of the dimensions of their hidden layers.

MovieLens-1M Neuropathic Pain E-learning

Training
Epochs 200 1000 50

Batch Size 1000 1000 1000
Learning Rate 1e-3 1e-2 1e-3
Weight Decay 0 0 0

Meta-Training
Epochs 100 300 20

Batch Size 256 128 128
Learning Rate 1e-4 1e-3 1e-3
Weight Decay 1e-3 1e-3 1e-3

Set Encoder
Feature Embedding Dim. 50 30 50

Set Embedding Dim. 30 30 30
Encoder

Latent Dim. 150 20 150
Layers [200] [30] [200]

Decoder
Shared Layers [200] [30] [200]

Output Variance 0.1 - -
CHN

Data point Embedding Dim. 50 25 50
Context Encoding Dim. 50 25 50
Context Encoder Layers [128] [50] [50]

Metadata Encoding Dim. 5 - 20
Metadata Encoder Layers [10] - [20]
Param. Pred. Net Layers [256,256,256] [64,64] [50,100,150]

D Appendix: Experiment Details

All models were implemented in PyTorch [25]. All experiments were performed on a single Nvidia
Tesla K80 GPU. For training both the P-VAE and the CHN’s parameters, the ADAM[14] optimizer
was used with β1 = 0.9, β2 = 0.999 and ε = 10−8. Training and evaluating a CHN for the specified
number of epochs took around 3 minutes on the Neuropathic Pain dataset, around 1.5 hours on the
E-learning dataset, and around 8 hours on MovieLens-1M.

Details of hyperparameters and model architectures used for each dataset can be found in Table 2.
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