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Abstract

Bayesian optimization (BO) is among the most effective and widely-used blackbox
optimization methods. BO proposes solutions according to an explore-exploit
trade-off criterion encoded in an acquisition function, many of which are derived
from the posterior predictive of a probabilistic surrogate model. Prevalent among
these is the expected improvement (EI). Naturally, the need to ensure analytical
tractability in the model poses limitations that can ultimately hinder the efficiency
and applicability of BO. In this paper, we cast the computation of EI as a binary
classification problem, building on the well-known link between class-probability
estimation (CPE) and density ratio estimation (DRE), and the lesser-known link be-
tween density ratios and EI. By circumventing the tractability constraints imposed
on the model, this reformulation provides numerous natural advantages, not least
in scalability, increased flexibility, and greater representational capacity.

1 Introduction

Bayesian optimization (BO) is a sample-efficient methodology for the optimization of expensive
black-box functions [4, 23]. In brief, BO proposes candidate solutions according to an acquisition
function that encodes the explore-exploit trade-off. At the core of BO is a probabilistic surrogate
model based on which the acquisition function can be computed. The probabilistic model of choice
in BO is commonly the Gaussian process (GP), owing to its flexibility and ability to yield uncertainty
estimates.

However, GP-based BO can also be hampered by the limitations of GPs. Notably, they a) scale
cubically with the number of observations [33] and b) assume stationarity, i.e. that the covariances
between outputs are translation-invariant with respect to their inputs [26]. Further, they are not
inherently equipped to deal with c) discrete variables, ordered or otherwise (i.e. categorical), and
d) variables with conditional dependency structures [13]. Naturally, to address these issues, much
of the focus has been directed toward extending the surrogate model itself. This has often led to ad
hoc extensions that, by necessity of ensuring analytical tractability, place strong and oversimplifying
assumptions at the expense of expressiveness.

Recognizing that the surrogate model is only a means to an end (i.e. of constructing an acquisition
function), we seek to express acquisition functions in an alternate form that does not impose analytical
tractability constraints on the surrogate model. Of particular interest is the expected improvement
(EI) function [20], which has seen widespread adoption. Remarkably, Bergstra et al. [2] demonstrate
that the EI function can be expressed as the relative ratio between two densities [34]. To estimate this
density ratio, they propose a method, known as the tree-structured Parzen estimator (TPE), which
can naturally deal with tree-structured inputs, discrete inputs, and scales linearly with the number of
observations.

In this paper, we underscore the potential shortcomings of the TPE approach for tackling the general
density ratio estimation (DRE) problem. In § 2, we highlight, among other issues that may lead
to numerical instability, its tendency to scale poorly to higher dimensions [28]. In § 3, we explore
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Figure 1: Optimizing a synthetic test function f(x) = sin(3x) + x2 − 0.7x with observation noise
ε ∼ N (0, 0.22). Initially, N = 27 candidates values of x are drawn from [−2, 1]. The candidates
whose corresponding target y values are in the top performing fraction γ = 1/3 are shown in blue.
The remaining candidates are shown in orange. The density estimates of `(x) and g(x) are shown in
the top pane.

more powerful alternatives to fully exploit the link between DRE and the EI function, namely, DRE
by class-probability estimation (CPE). This approach retains the strengths of TPE while scaling
better with the dimensionality, and enables one to build arbitrarily expressive classifiers. Depending
on the choice of classifier, it is possible to capture not only non-linear, but also non-stationary and
heteroscedastic behaviours. Our experiments in § 4 demonstrate that our BO-by-DRE approach,
termed BORE, competes favorably with state-of-the-art blackbox optimization algorithms on a
variety of challenging synthetic test problems and meta-surrogate benchmarks for automated machine
learning (AUTOML) [16].

2 Background

Let x ∈ X denote an input to the blackbox function f : X → R and y ∼ N (f(x), σ2) the noisy
observation of the corresponding output with noise variance σ2. Further, let DN = {(xn, yn)}Nn=1
denote the set of observations.

Expected improvement. First we define a threshold τ = Φ−1(γ) where constant γ denotes some
quantile of the observed y values, i.e. γ = Φ(τ) = p(y < τ | DN ). Let Iγ(x) be the utility function
that quantifies the non-negative improvement over τ

Iγ(x) = max(τ − y, 0). (1)

Then, the EI function αγ(x;DN ) is defined as the expected value of Iγ(x) under the posterior
predictive distribution p(y |x,DN )

αγ(x;DN ) = Ep(y |x,DN )[Iγ(x)]. (2)

Note that the dependence of αγ(x;DN ) on γ occurs in τ (which is implicitly a function of γ). For
example, γ = 0 leads to the conventional setting of τ = minn yn. In what follows, we will consider
a relaxation of τ with settings where γ > 0.

Relative density ratio. Let `(x) and g(x) be a pair of densities. The γ-relative density ratio of `(x)
and g(x) is defined as

rγ(x) =
`(x)

γ`(x) + (1− γ)g(x)
, (3)

where γ`(x) + (1− γ)g(x) denotes the γ-mixture density with mixing proportion 0 ≤ γ < 1 [34].
Note that for γ = 0, we recover the ordinary density ratio r0(x) = `(x)/g(x). Further, observe that
we can directly express rγ(x) as a function of r0(x),

rγ(x) = (γ + r0(x)−1(1− γ))−1. (4)
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Now, suppose `(x) and g(x) are distributions such that x ∼ `(x) if y < τ , and x ∼ g(x) if y ≥ τ .
Then, let us express the conditional p(x | y,DN ) in terms of `(x) and g(x)

p(x | y,DN ) =

{
`(x) if y < τ,

g(x) if y ≥ τ. (5)

Remarkably, under this construction (illustrated in Figure 1), Bergstra et al. [2] demonstrate that the
EI function can be expressed as the γ-relative density ratio, up to some constant multiplicative factor

αγ(x;DN ) ∝ rγ(x) (6)

For completeness, we provide the self-contained derivation in Appendix A. Hence, this result shows
that the problem of maximizing EI reduces to that of maximizing the γ-relative density ratio,

x? = arg max
x∈X

αγ(x;DN ) = arg max
x∈X

rγ(x), (7)

for which a wide variety of approaches are available [29].

2.1 Tree-structured Parzen estimator

In practice, to solve the optimization problem of eq. 7, Bergstra et al. [2] propose taking the following
approach:

1. Since the relative density ratio rγ(x) is a monotonically non-decreasing function of the
ordinary density ratio r0(x), they restrict their attention to maximizing the latter,

x? = arg max
x∈X

r0(x), (8)

thus, effectively ignoring the mixing proportion γ altogether.
2. Then, they estimate the ordinary density ratio r0(x) by separately estimating its constituent

numerator `(x) and denominator g(x) using a tree-based variant of kernel density estimation
(KDE) [25].

It is easy to see why this approach might be favorable compared to methods based on GP regression:
one now incurs anO(N) computational cost as opposed to theO(N3) cost of GP posterior inference.
Furthermore, it is equipped to deal with tree-structured, mixed continuous, ordered and unordered
discrete inputs. In spite of its advantages, TPE is not without potential pitfalls as discussed next.

2.2 Potential pitfalls

The first major drawback of TPE lies within step 1:

Singularities. Relying on the ordinary density ratio can result in numerical instabilities since it is
unbounded, and often diverges to infinity even in simple toy scenarios. In contrast, the γ-relative
density ratio is always bounded above by γ−1 when γ > 0 [34].

The other potential problems of the TPE lie within step 2:

Vapnik’s principle. Conceptually, independently estimating the densities is actually a more cumber-
some approach that violates Vapnik’s principle—namely, that when solving a problem of interest,
one should refrain from resorting to solve a more general problem as an intermediate step [32]. In
this instance, density estimation is a more general problem that is arguably more difficult than density
ratio estimation.

Kernel bandwidth. KDE depends crucially on the selection of an appropriate kernel bandwidth,
which is notoriously difficult [21, 24]. Furthermore, even with an optimal selection of a single fixed
bandwidth, it cannot cannot simultaneously adapt to low- and high-density regions [31].

Error sensitivity. These difficulties are exacerbated by the fact that one is required to select two
bandwidths, whereby the optimal bandwidth for an individual density may not necessarily be
appropriate for approximating the density ratio. Indeed, it may even have deleterious effects. This
makes this approach unforgiving to any error in the individual approximations, particularly in that of
the denominator g(x), which has an outsized influence on the resulting density ratio.
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Curse of dimensionality. For these reasons and more, KDE often falls short in high-dimensional
regimes. In contrast, direct DRE has consistently proven to scale better with dimensionality [28].

Optimization. Ultimately, we care not only about estimating the density ratio, but also maximizing it
wrt to inputs for the purposes of candidate suggestion. It is cumbersome to maximize the ratio of
KDEs and one must typically resort to derivative-free methods.

3 Methodology

We consider an alternative approach to tackling the optimization problem of eq. 7 that circumvents the
issues of TPE outlined in § 2.2, namely one based on CPE. Density ratio estimation is closely-linked
to CPE [3, 6, 19, 22, 29]. To see this, let us introduce binary target variables z = I[y < τ ] or, more
explicitly,

z =

{
1 if y < τ,

0 if y ≥ τ. (9)

By definition, we have `(x) = p(x | z = 1) and g(x) = p(x | z = 0). Then, we can apply Bayes’
rule to give

r0(x) =
`(x)

g(x)
=
p(x | z = 1)

p(x | z = 0)
=
p(z = 0)

p(z = 1)

p(z = 1 |x)

p(z = 0 |x)
. (10)

Now, by construction, we have

p(z = 0)

p(z = 1)
=

(
γ

1− γ

)−1
and

p(z = 1 |x)

p(z = 0 |x)
=

π(x)

1− π(x)
, (11)

where π(x) = p(z = 1 |x) denotes the class-posterior probability. Hence,

r0(x) =

(
γ

1− γ

)−1
π(x)

1− π(x)
. (12)

We plug this into eq. 4 to give

rγ(x) = γ−1π(x) (13)

We refer to Appendix B for derivations. Equations (12) and (13) establish the precise link between
the class-posterior probability and the ordinary and γ-relative density ratios, respectively. Notice in
particular that the γ-relative density ratio is exactly equivalent to the class-posterior probability up to
constant factor γ−1.

Let us estimate the class-posterior probability π(x) using πθ(x), a function parameterized by θ. Then,
we can approximate the γ-relative density ratio with rγ(x) ' γ−1πθ(x). To recover the true class-
posterior probability, one can minimize a proper scoring rule [9] such as the binary cross-entropy
(BCE) loss

L(θ) = −β · E`(x)[log πθ(x)]− (1− β) · Eg(x)[log (1− πθ(x))] (14)

' − 1

N

(
N∑
n=1

zn log πθ(xn) + (1− zn) log (1− πθ(xn))

)
, (15)

where β denotes the class balance rate. It can be verified that the BCE loss attains its minimum at θ∗

such that

πθ∗(x) =
β`(x)

β`(x) + (1− β)g(x)
. (16)

We refer to Appendix C for detailed derivations. Now, since β = γ by construction, this leads to
πθ∗(x) = γ · rγ(x). We provide an illustration on a toy example in Appendix D.

Hence, in the so-called BO loop (summarized in Algorithm 1), we alternately optimize the classifier
parameters θ wrt to the BCE loss (to improve its approximation to the true class-posterior probability;
Line 2) and the classifier input x wrt to its output (to suggest the next candidate to evaluate; Line 3).

In traditional GP-based methods, Line 3 typically consists of maximizing the EI function, explicitly
expressed using the statistics of the GP posterior predictive (its mean, variance, pdf and cdf), while
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Algorithm 1: Bayesian optimization by density ratio estimation (BORE).
1 while under budget do
2 θ∗ ← arg minθ L(θ) // update classifier by optimizing parameters θ wrt BCE loss

3 xN ← arg maxx∈X πθ∗(x) // suggest new candidate by optimizing input x wrt classifier output

4 yN ← f(xN ) // obtain yN by evaluating blackbox function at xN

5 DN ← DN−1 ∪ {(xN , yN )} // update dataset

6 end

Line 2 would be the optimization of the GP hyperparameters wrt the marginal likelihood. By analogy
with our approach, the parameterized function πθ(x) is itself an approximation to the EI function
to be maximized directly, while the approximation is tightened by improving its fit to the true
class-posterior probabilities, in turn through optimization wrt the BCE loss.

In short, we have reduced the problem of computing EI to that of training a probabilistic classifier,
thus unlocking a broad range of possible alternatives to GPs. This enables one to employ virtually any
state-of-the-art classification method available to parameterize the classifier with arbitrarily expressive
approximators that have the capacity to deal with non-linear, non-stationary, and heteroscedastic
phenomena commonly encountered in BO.

In this work, we parameterize πθ(x) by a feed-forward neural network (NN). This is an attractive
choice not only for its universal approximation guarantees [11] but because a) one can easily adopt
stochastic gradient descent (SGD) methods to scale up its parameter learning [17], and b) it is
differentiable end-to-end, which enables the use of quasi-Newton methods such as L-BFGS [18] for
candidate suggestion.

4 Experiments

We describe the experiments conducted to empirically evaluate our method. The classifier πθ(x) is
a multi-layer perceptron (MLP), with 2 hidden layers, each with 32 units. We consistently found
elu activations [7] to be particularly effective for low-dimensional problems, with relu remaining
otherwise the best choice. We optimize the weights with ADAM [14] using batch size of B = 64.
For candidate suggestion, we optimize the input of the classifier wrt to its output using multi-started
L-BFGS with three random restarts. To encourage exploration, we suggest random candidates at
a proportion ε = 0.1 of the time. Further details concerning the implementation and setting of
additional hyperparameters are provided in Appendix E.

Synthetic test functions. We first consider a number of challenging synthetic test functions for
optimization [30], namely, the BRANIN, SIX-HUMP CAMEL, MICHALEWICZ5D, and HART-
MANN6D functions. To quantitatively assess performance, we report the immediate regret, defined
as the absolute error between the global minimum and the lowest function value attained thus far. To
assess the sample efficiency, we compare the immediate regret over the number of function evalu-
ations against baselines. The baselines shown here are Random Search and TPE, as implemented
in the HyperOpt library [1]. For each method, we show the mean and 95% confidence interval (CI)
across results obtained from 20 repeated runs.

The results are shown in Figure 2. Across these problems, we find BORE to be competitive against
TPE. In the BO folklore, TPE is known to have a tendency of over-exploitation. This is especially
manifest in the SIX-HUMP CAMEL problem, which is designed to have multiple local minima.
In visualizations included in Appendix F, we show that TPE consistently gets bogged down in a
local minimum, while BORE is able to balance the exploitation of the various local minima with the
exploration of other parts of the space.

Meta-surrogate benchmarks. Finally, we compare against a range of state-of-the-art optimization
methods on the meta-surrogate benchmarks, PROFET [16]. First, BO methods with diffent kinds
of probabilistic models: GP-based BO (GP-BO) [15], the random forest-based SMAC [12] and
TPE [2], and second, two evolutionary algorithms: CMA-ES [10] and differential evolution (DE) [27].
PROFET emulates the hyperparameter tuning of common machine learning algorithms such as
support vector machines (SVMs) [8], gradient boosting (XGBoost) [5], and others, on classification
and regression problems, by sampling tasks (in the form of objective functions) from a generative
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Figure 2: Immediate regret over function evaluations on the synthetic test problems.

meta-model. We sampled 50 tasks for each of the three benchmark classes: META-SVM, META-
FCNET, and META-XGBoost. Each optimizer was evaluated on each task with 20 independent runs
using different random seeds. To aggregate the performance across tasks, we follow the protocol
of Klein et al. [16] and report the average ranks and the empirical cdf (ECDF) of the runtime, using a
single run of Random Search with 200 iterations as targets.
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Figure 3: ECDFs (top) and ranks (bottom) of the three problem types (SVM, FCNET, and XGBoost)
of PROFET. For each problem type, results are aggregated over 20 runs per method on 50 task
sampled from the generative meta-model.

Figure 3 shows the results on all benchmark classes, from which we see that BORE consistently
performs better than all other baselines. In particular, observe that despite GP-BO approaching the
optimum faster in the early stages, it is eventually outperformed by BORE after having observed
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a sufficient amount of data. Lastly, note that we were only able to run GP-BO for 100 function
evaluations on the META-FCNET and META-XGBoost benchmarks due to its prohibitively-high
computational overhead.

5 Conclusion

We have presented a novel methodology for BO based on the observation that the problem of
computing EI can be reduced to that of probabilistic classification. This observation is made through
the well-known link between CPE and DRE, and the lesser-known insight that EI can be expressed as
a relative density ratio between two unknown distributions. We discussed important ways in which
TPE, an early attempt to exploit the latter, falls short. Further, we demonstrated that a prototype
implementation of this methodology, based on a simple feed-forward NN, can outperform TPE and
be competitive with state-of-the-art derivative-free optimization methods.

A key appeal of this methodology lies in the room it allows for variations. Indeed, any other state-
of-the-art classification method can readily be applied. In particular, SVMs, random forests, and
XGBoost may prove to be strong contenders against NNs. Another axis of variation worth exploring
is the potential benefits that other direct DRE methods may have to offer. In future work, we will also
explore the effects of a fully-Bayesian treatment of the classifier parameters.

Overall, the simplicity and effectiveness of BORE make it a promising approach for blackbox
optimization, and its high degree of extensibility provides many exciting avenues for future work.
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