
Supplementary Material
Bayesian Optimization by Density Ratio Estimation

Louis C. Tiao1,3 Aaron Klein2 Cédric Archambeau2

Edwin V. Bonilla3,1 Matthias Seeger2 Fabio Ramos1,4
1University of Sydney 2Amazon Web Services 3CSIRO’s Data61 4NVIDIA

A Expected improvement

For completeness, we reproduce the derivations of [1]. Recall that expected improvement (EI) is
defined as the expectation of the improvement utility function Iγ(x) under the posterior predictive
distribution p(y |x,DN ). Expanding this out, we have

αγ(x;DN ) = Ep(y |x,DN )[Iγ(x)] =

∫ ∞
−∞

Iγ(x)p(y |x,DN ) dy (1)

=

∫ τ

−∞
(τ − y)p(y |x,DN ) dy (2)

=
1

p(x | DN )

∫ τ

−∞
(τ − y)p(x | y,DN )p(y | DN ) dy. (3)

Note we have used Bayes’ rule in the last step above. Next, the denominator evaluates to

p(x | DN ) =

∫ ∞
−∞

p(x | y,DN )p(y | DN ) dy (4)

= `(x)

∫ τ

−∞
p(y | DN ) dy + g(x)

∫ ∞
τ

p(y | DN ) dy (5)

= γ`(x) + (1− γ)g(x), (6)

since γ = Φ(τ) = p(y < τ | DN ), by definition. Finally, we evaluate the numerator,∫ τ

−∞
(τ − y)p(x | y,DN )p(y | DN ) dy = `(x)

∫ τ

−∞
(τ − y)p(y | DN ) dy (7)

= `(x)τ

∫ τ

−∞
p(y | DN ) dy − `(x)

∫ τ

−∞
yp(y | DN ) dy

(8)

= γτ`(x)− `(x)

∫ τ

−∞
yp(y | DN ) dy (9)

= K · `(x), (10)

where

K = γτ −
∫ τ

−∞
yp(y | DN ) dy. (11)

4th Workshop on Meta-Learning at NeurIPS2020, Vancouver, Canada.



Hence, this shows that the EI function is equivalent to the γ-relative density ratio [3] up to a constant
factor K,

αγ(x;DN ) ∝ `(x)

γ`(x) + (1− γ)g(x)
(12)

=

(
γ +

g(x)

`(x)
(1− γ)

)−1
. (13)

B Class-posterior probability

We provide an unabridged derivation of the identity in eq. 13. First, the ordinary density ratio is given
by

r0(x) =
`(x)

g(x)
=
p(x | z = 1)

p(x | z = 0)
(14)

=

(
p(z = 1 |x)p(x)

p(z = 1)

)(
p(z = 0 |x)p(x)

p(z = 0)

)−1
(15)

=
p(z = 0)

p(z = 1)
· p(z = 1 |x)

p(z = 0 |x)
. (16)

By construction, we have,

p(z = 0)

p(z = 1)
=
p(y ≥ τ)

p(y < τ)
=

1− γ
γ

=

(
γ

1− γ

)−1
. (17)

Furthermore,
p(z = 1 |x)

p(z = 0 |x)
=

p(z = 1 |x)

1− p(z = 1 |x)
=

π(x)

1− π(x)
. (18)

Therefore,

r0(x) =

(
γ

1− γ

)−1
π(x)

1− π(x)
. (19)

Plugging this into the expression of eq. 4, we have

rγ(x) =

(
γ + (1− γ)

(
γ

1− γ

)(
π(x)

1− π(x)

)−1)−1
(20)

= γ−1

(
1 +

(
π(x)

1− π(x)

)−1)−1
(21)

= γ−1π(x), (22)

as required.

C Binary cross-entropy

The binary cross-entropy (BCE) loss is given by

L(θ) = −β · E`(x)[log πθ(x)]− (1− β) · Eg(x)[log (1− πθ(x))], (23)

where β denotes the class balance rate. That is, let N` and Ng be the sizes of the support of `(x) and
g(x), respectively. Then, we have

β =
N`
N
, and 1− β =

Ng
N
, (24)

where N = N` +Ng .

2



C.1 Empirical risk minimization

We show that the BCE loss can be approximated by the empirical risk,

L(θ) ' − 1

N

(
N∑
n=1

zn log πθ(xn) + (1− zn) log (1− πθ(xn))

)
. (25)

Let ρ be the permutation of the set {1, . . . , N}, i.e. the bijection from {1, . . . , N} to itself, such that
yρ(n) < τ if 0 < ρ(n) ≤ N`, and yρ(n) ≥ τ if N` < ρ(n) ≤ Ng . That is to say,

xρ(n) ∼
{
`(x) if 0 < ρ(n) ≤ N`,
g(x) if N` < ρ(n) ≤ Ng.

and zρ(n) =

{
1 if 0 < ρ(n) ≤ N`,
0 if N` < ρ(n) ≤ Ng.

(26)

Then, we have

L(θ) = − 1

N

(
N` · E`(x)[log πθ(x)] +Ng · Eg(x)[log (1− πθ(x))]

)
(27)

' − 1

N

��N` · 1

��N`

N∑̀
n=1

log πθ(xρ(n)) +��Ng ·
1

��Ng

Ng∑
n=N`+1

log (1− πθ(xρ(n)))

 (28)

= − 1

N

(
N∑
n=1

zρ(n) log πθ(xρ(n)) + (1− zρ(n)) log (1− πθ(xρ(n)))

)
(29)

= − 1

N

(
N∑
n=1

zn log πθ(xn) + (1− zn) log (1− πθ(xn))

)
. (30)

C.2 Optimum

We show the identity of eq. 16. Taking the functional derivative and setting it to zero, we get

0 =
∂L
∂πθ

= −E`(x)
[

β

πθ(x)

]
+ Eg(x)

[
1− β

1− πθ(x)

]
(31)

=

∫
−β`(x)

πθ(x)
+

(1− β)g(x)

1− πθ(x)
dx (32)

This integral evaluates to zero iff the integrand itself evaluates to zero. Hence, we solve the following
for πθ(x),

β`(x)

πθ(x)
=

(1− β)g(x)

1− πθ(x)
. (33)

We re-arrange this expression to give

1− πθ(x)

πθ(x)
=

(
1− β
β

)
g(x)

`(x)
⇔ 1

πθ(x)
− 1 =

β`(x) + (1− β)g(x)

β`(x)
− 1. (34)

Finally, we add one to both sides and invert the result to give

πθ(x) =
β`(x)

β`(x) + (1− β)g(x)
, (35)

as required.

D Toy example

Consider the following toy example where the densities `(x) and g(x) are known and given exactly
by the following (mixture of) Gaussians,

`(x) = 0.3N (2, 12) + 0.7N (−3, 0.52), and g(x) = N (0, 22), (36)

as illustrated by the solid blue and orange lines in Figure 1a, respectively. We draw a total of

3



−6 −4 −2 0 2 4 6 8

x

0.0

0.1

0.2

0.3

0.4

0.5

d
en

si
ty

density

`(x)

g(x)

kind

exact

kde

(a) Densities `(x) and g(x).

−6 −4 −2 0 2 4 6

x

0

2

4

6

8

r γ
(x

)

kind

exact

cpe

kde

γ

0
1
3

(b) γ-relative density ratios rγ(x).

Figure 1: Synthetic toy example with (mixtures of) Gaussians.

N = 1000 samples from these distributions, with a fraction γ = 1/3 drawn from `(x) and the
remainder from g(x). These are represented by the vertical markers along the bottom of the x-axis (a
so-called “rug plot”). Then, two kernel density estimations (KDEs), shown with dashed lines, are fit
on these respective sample sets, with kernel bandwidths selected according to the “normal reference”
rule-of-thumb. We see that, for both densities, the modes are recovered well, while for `(x), the
variances are overestimated in both of its mixture components. As we shall see, this has deleterious
effects on the resulting density ratio estimate.

In Figure 1b, we show the ordinary and γ-relative density ratios with the solid and dashed red lines,
respectively. The density ratio estimates resulting from taking the ratio of the KDEs are shown in
green. Those resulting from the class-probability estimation (CPE) method described in § 3 are
shown in blue. The probabilistic classifier consists of a simple multi-layer perceptron (MLP) with 3
hidden layers, each with and 32 units and elu activations.

The CPE method appears, at least visually, to recover the exact density ratios well, while the KDE
method does so quite poorly. Perhaps the more important quality to focus on, for the purposes of
Bayesian optimization (BO), is the global maximum of the density ratio functions. In the case of
the KDE method, we can see that this deviates significantly from that of the true density ratios. In
this instance, even though KDE fit g(x) well and recovered the modes of `(x) accurately, a slight
overestimation of the variance in the latter led to a significant shift in the maximum of the resulting
density ratio functions.

E Implementation details

Software. Our method is implemented as a configuration generator plugin for the HpBandSter
library of Falkner et al. [2].

Epochs per iteration. To ensure the training time on BO iteration N is nonincreasing as a function
of N , instead of directly specifying the number of epochs (i.e. full passes over the data), we specify
the number of (batchwise gradient) steps S to train for in each iteration. Since the number of steps per
epoch is M = dN/Be, the effective number of epochs on the N -th BO iteration is then E = bS/Mc.
For example, if S = 1024 and B = 64, the number of epochs for iteration N = 512 would be
E = 128. As another example, for all 0 < N ≤ B, we have E = S = 1024. We set S = 100.

F Qualitative analysis

In Figures 2 and 3, we show a scatterplot of the locations suggested by tree-structured Parzen estimator
(TPE) and BO, respectively, across 20 runs on the SIX-HUMP CAMEL problem.

4

https://github.com/automl/HpBandSter


−2

−1

0

1

2
run = 0 run = 1 run = 2 run = 3

−2

−1

0

1

2
run = 4 run = 5 run = 6 run = 7

−2

−1

0

1

2
run = 8 run = 9 run = 10 run = 11

−2

−1

0

1

2
run = 12 run = 13 run = 14 run = 15

−2 0 2

−2

−1

0

1

2
run = 16

−2 0 2

run = 17

−2 0 2

run = 18

−2 0 2

run = 19

evaluation

100

200

300

400

500

error

25

50

75

100

125

Figure 2: Candidates suggested by TPE on the SIX-HUMP CAMEL problem across 20 runs.

References
[1] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In

Advances in Neural Information Processing Systems, pages 2546–2554, 2011.

[2] S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperparameter optimization at scale. In
International Conference on Machine Learning, pages 1437–1446, 2018.

[3] M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama. Relative density-ratio estimation for
robust distribution comparison. In Advances in Neural Information Processing Systems, pages 594–602,
2011.

5



−2

−1

0

1

2
run = 0 run = 1 run = 2 run = 3

−2

−1

0

1

2
run = 4 run = 5 run = 6 run = 7

−2

−1

0

1

2
run = 8 run = 9 run = 10 run = 11

−2

−1

0

1

2
run = 12 run = 13 run = 14 run = 15

−2 0 2

−2

−1

0

1

2
run = 16

−2 0 2

run = 17

−2 0 2

run = 18

−2 0 2

run = 19

evaluation

100

200

300

400

500

error

30

60

90

120

150

Figure 3: Candidates suggested by BORE on the SIX-HUMP CAMEL problem across 20 runs.

6


	Expected improvement
	Class-posterior probability
	Binary cross-entropy
	Empirical risk minimization
	Optimum

	Toy example
	Implementation details
	Qualitative analysis

