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Abstract

This paper studies a new design of the optimization algorithm for training deep
learning models with a fixed architecture of the classification network in a con-
tinual learning framework, where the training data is non-stationary and the non-
stationarity is imposed by a sequence of distinct tasks. This setting implies the
existence of a manifold of network parameters that correspond to good perfor-
mance of the network on all tasks. Our algorithm is derived from the geometrical
properties of this manifold. We first analyze a deep model trained on only one
learning task in isolation and identify a region in network parameter space, where
the model performance is close to the recovered optimum. We provide empirical
evidence that this region resembles a cone that expands along the convergence
direction. We study the principal directions of the trajectory of the optimizer
after convergence and show that traveling along a few top principal directions
can quickly bring the parameters outside the cone but this is not the case for the
remaining directions. We argue that catastrophic forgetting in a continual learning
setting can be alleviated when the parameters are constrained to stay within the
intersection of the plausible cones of individual tasks that were so far encountered
during training. Enforcing this is equivalent to preventing the parameters from
moving along the top principal directions of convergence corresponding to the past
tasks. For each task we introduce a new linear autoencoder to approximate its
corresponding top forbidden principal directions. They are then incorporated into
the loss function in the form of a regularization term for the purpose of learning the
coming tasks without forgetting. We empirically demonstrate that our algorithm
performs favorably compared to other state-of-art regularization-based continual
learning methods, including EWC [1] and SI [2].

1 Introduction
Humans are equipped with complex neurocognitive mechanisms that enable them to continually
learn over time by accommodating new knowledge and transferring knowledge between correlated
tasks while retaining previously learned experiences. This ability is often referred to as continual

or lifelong learning. In a continual learning setting one needs to deal with a continual acquisition
of incrementally available information from non-stationary data distributions (online learning) and
avoid catastrophic forgetting, i.e., a phenomenon that occurs when training a model on currently
observed task leads to a rapid deterioration of the model’s performance on previously learned tasks.
In the commonly considered scenario of continual learning the tasks come sequentially and the model
is not allowed to inspect again the samples from the tasks seen in the past [3]. Within this setting,
there exist two types of approaches that are complementary and equally important in the context of
solving the continual learning problem: i) methods that assume fixed architecture of deep model and
focus on designing the training strategy that allows the model to learn many tasks (note that a human
brain stops growing at a certain age [4], which further motivates these methods from the biological
perspective) and ii) methods that rely on existing training strategies (mostly SGD [5] and its variants,
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which themselves suffer catastrophic forgetting [6]) and focus on expanding the architecture of the
network to accommodate new tasks. In this paper we focus on the first framework.

Training a network in a continual learning setting, when the tasks arrive sequentially, requires solving
many optimization problems, one per task. A space of solutions (i.e., network parameters) that
correspond to good performance of the network on all encountered tasks determine a common
manifold of plausible solutions for all these optimization problems. In this paper we seek to
understand the geometric properties of this manifold. In particular we analyze how this manifold is
changed by each new coming task and propose an optimization algorithm that efficiently searches
through it to recover solutions that well-represent all already-encountered tasks. Our contribution
to the existing literature relies on developing a continual learning algorithm that explicitly relies on
the characteristics of the manifold shared between tasks. What is new in this paper? To the best of
our knowledge, the analysis of the deep learning loss landscape that determines the shape of this
manifold, the algorithm, and the experimental results are all new here.

The paper is organized as follows: Section 2 reviews recent progress in the research area of continual
learning, Section 3 provides empirical analysis of the geometric properties of the deep learning
loss landscape and builds their relation to the continual learning problem, Section 4 introduces
our algorithm that we call DCO since it is based on the idea of direction-constrained optimization,
Section 5 contains empirical evaluations, and finally Section 6 concludes the paper. Additional results
are contained in the Supplement.
2 Related Work
Continual learning and the catastrophic forgetting problem has been addressed in a variety of papers.
A convenient literature survey dedicated to this research theme was recently published [3]. The
existing approaches can be divided into three categories [3, 7]: regularization-based methods, dynamic
architecture methods, and replay techniques. We discuss here the first family of methods and defer the
description of dynamic architecture methods and replay methods to the Supplement as they are not
directly related to the setting considered in this paper (in our setting we do not allow the architecture
of the classifier to dynamically change and we do not use replay).

Regularization-based methods modify the objective function by adding a penalty term that controls
the change of model parameters when a new task is observed. In particular these methods ensure
that when the model is being trained on a new task, the parameters stay close to the ones learned on
the tasks seen so far. EWC [1] realizes that using tasks’ Fisher information matrices to measure the
overlap of tasks. SI [2] introduces the notion of synaptic importance, enabling the assessment of the
importance of network parameters when learning sequences of classification tasks, and penalizes
performing changes to the parameters with high importance when training on a new task in order to
avoid overwriting old memories. Relying on the importance of the parameters of a neural network
when learning a new task is also a characteristic feature of another continual learning technique called
MAS [8]. The RWALK method [9] is a combination of an efficient variant of EWC and a modified
SI technique that computes a parameter importance score based on the sensitivity of the loss over the
movement on the Riemannian manifold. Additionally, RWALK stores a small subset of representative
samples from the previous tasks and uses them while training the current task, which is essentially a
form of a replay strategy (replay strategies are discussed in the Supplement). Finally, the recently
proposed OGD algorithm [10] relies on constraining the parameters of the network to move within
the orthogonal space to the gradients of previous tasks. This approach is memory-consuming and not
scalable as it requires saving the gradient directions of the neural network predictions on previous
tasks. All methods discussed so far constitute a family of techniques that keep the architecture of the
network fixed. The algorithm we propose in this paper also belongs to this family.

Another regularization method called LwF [11] optimizes the network both for high accuracy on the
next task and for preservation of responses on the network outputs corresponding to the past tasks.
This is done using only examples for the next task. The encoder-based lifelong learning technique [12]
uses per-task under-complete autonecoders to constraint the features from changing when the new
task arrives, which has the effect of preserving the information on which the previous tasks are
mainly relying. Both these methods fundamentally differ from the aforementioned techniques and
the approach we propose in this paper in that they require a separate network output for each task.
Finally, P&C [13] builds upon EWC and takes advantage of the knowledge distillation mechanism to
preserve and compress the knowledge obtained from the previous tasks. Such a mechanism could as
well be incorporated on the top of SI, MAS, or our technique.
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3 Loss landscape properties

Figure 1: The behavior of the loss func-
tion for ↵ = 0 and varying � when mov-
ing along different eigenvectors (zoomed
plot; the original plot is in the Supple-
ment, Figure 5).

The experimental observations provided in this section
extend and complement the behavior characterization of
SGD [14] connecting its dynamics with random landscape
theory that stems from physical systems. The details of
the experimental setup of this section can be found in the
Supplement (Section 8). Consider learning only one task.
We analyze the top principal components of the trajectory
of SGD after convergence, i.e., after the optimizer reached
a saturation level2. Let x⇤ denotes the value of the param-
eters in the beginning of the saturation phase. The conver-
gence trajectory will be represented as a sequence of opti-
mizer steps, where each step is represented by the change
of model parameters that the optimizer induced (gradient).
We consider n steps after model convergence and compute
the gradient of the loss function at these steps that we
refer to as rL(x1; ⇣1),rL(x2; ⇣2), . . . ,rL(xn; ⇣n) (xi

denotes the model parameters at the ith step and ⇣i denotes the data mini-batch for which the gradient
was computed at that step). We use them to form a matrix G 2 Rd⇥n (i-th column of the matrix is
rL(xi; ⇣i)) and obtain the eigenvectors {vi} of GGT . We furthermore define the averaged gradient
direction ḡ = 1

n

Pn
i=1rL(xi; ⇣i). We first study the landscape of the deep learning loss function

along directions vi and ḡ, i.e., we analyze the function
f(↵,�, vi) = L(x⇤ � ↵ḡ + �vi; ⇣), (1)

where ↵ and � are the step sizes along �ḡ and vi respectively and ⇣ is the entire training data set.

Remark: Below, the eigenvector with the lower-index corresponds to a larger eigenvalue.

Observation 1: Behavior of the loss for ↵ = 0 and changing � For each eigenvector vi, we first
fix ↵ to 0 and change � in order to study the behavior of f(0,�, vi). Figure 1 captures the result. It
can be observed that as the model parameters move away form optimal point x⇤ the loss gradually
increases. At the same time, the rate of this increase depends on the eigendirection that is followed
and grows faster while moving along eigenvectors with the lower-index. Thus we have empirically
shown that the loss changes more slowly along the eigenvectors with the higher-index, i.e., the

landscape is flatter along these directions.

Figure 2: The behavior of the loss func-
tion when varying � and s (zoomed plot;
the original plot is in the Supplement,
Figure 6).

Observation 2: Behavior of the loss in the subspaces
spanned by groups of eigenvectors Here we general-
ize Observation 1 to the subspaces spanned by a set of
eigenvectors. For the purpose of this observation only we
consider the following metric instead of the one given in
Equation 1:

h(�, Vs) = E
�⇠N (0,�

2
d I)

f(x⇤ + VsV
T
s �), (2)

where � is the random perturbation, � is the standard
deviation, and Vs = [vs�49, vs�48, · · · , vs] is the matrix
of eigenvectors of 50 consequtive indexes. To be more
concrete, we locally (in the ball of radius � around x⇤)
sample the space spanned by the eigenvectors in Vs. The
expectation is computed over 3000 random draws of �. In
Figure 2 we examine the behavior of h(�, Vs) for various

values of � and s. The plot confirms what was shown in Observation 1 that the loss landscape
becomes flatter in the subspace spanned by the eigenvectors with high index.

Observation 3: Behavior of the loss for changing ↵ and � We generalize Observation 1 and
examine what happens with f(↵,�, vi) when both ↵ and � change. Figure 3 captures the result. We
can see that as ↵ increases, or in other words as we go further along the averaged gradient direction,

the loss landscape becomes flatter. This property holds for an eigenevctor with an arbitrary index.

Thus for larger values of ↵ we can go further along eigenvector directions without significantly
2The optimization process is typically terminated when the loss starts saturating but we argue that running

the optimizer further gives benefits in the continual learning setting.
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changing the loss. This can be seen as a cone that expands along �ḡ. Furthermore, the findings of
Observation 1 are also confirmed in Figure 3. For the eigenvectors with higher index the loss changes
less rapidly (the cone is wider along these directions). These properties underpin the design of new
continual learning algorithm proposed in this work. When adding the second task, the algorithm
constrains the optimizer to stay within the cone of the first task. Inuititively this can be done by first
pushing the optimizer further into the cone along�ḡ and then constraining the optimizer from moving
along eigenvectors with low indexes in order to prevent forgetting the first task. This procedure can
be generalized to an arbitrary number of tasks as will be shown in the next section.

Figure 3: The behavior of the loss function when both ↵ and � are changing for eigenvectors with
different index.

4 Algorithm
In Section 3 we analyzed the loss landscape for a single task and discovered the existence of the
cone in the model’s parameter space where the model sustains good performance. We then discussed
the consequence of this observation in the continual learning setting. In this section we propose a
tractable continual learning algorithm that for each task finds its cone and uses it to constrain the
optimization problem of learning the following tasks. We refer to the model that is trained in the
continual learning setting as M. The proposed algorithm relies on identifying the top directions
along which the loss function for a given task increases rapidly and then constraining the optimization
from moving along these directions (we will refer to these directions as “prohibited”) when learning
subsequent tasks. Note that each new task adds “prohibited” directions. In order to efficiently identify
and constrain the “prohibited” directions we use compressed autoencoders whose design was tailored
for the purpose of the proposed algorithm. We train separate autoencoders for each learned task. The
jth autoencoder admits on its input gradients of the loss function that are obtained when training
the model M on the jth task. The intuitive idea behind this approach is that autoencoder with small
feature vector will capture the top directions of the gradients it is trained on. We refer to our method
as direction-constrained optimization (DCO) method.
4.1 Loss function
In this section we explain the loss function that is used to train the model M in a continual learning
setting. We incorporate a regularization term into the loss function that penalizes moving along the
“prohibited” directions. The loss function that is used to train the model on the ith task takes the form:

Li(x; ⇠) = Lce(x; ⇠) + �
i�1X

j=1

��ENCj(x� x⇤
j )
��2
2
, (3)

where ⇠ is a training example, Lce is a cross-entropy loss, � is a hyperparameter controlling the
regularization, ENCj(·) denotes the operation of the encoder of the autoencoder trained on task j,
and x⇤

j are the parameters of model M obtained at the end of training the model on the jth task.
4.2 Compressed linear autoencoders
In our algorithm, the role of autoencoder is to identify the top k directions of the optimizer’s trajectory
after convergence, where this trajectory is defined by gradient steps, obtained during training the
model M. A traditional linear autoencoder, consisting of two linear layers, would require 2⇥ d⇥ k
number of parameters, where d denotes the number of parameters of the model M. Commonly
used deep learning models however contain millions of parameters [15, 16, 17], which makes a
traditional autoencoder not tractable for this application. In order to reduce the memory footprint of
the autoencoder we propose an architecture that is inspired by the singular value decomposition. The
proposed autoencoder admits a matrix on its input and is formulated as

AE(M) = Udiag(U>MV )V >, (4)
where diag(U>MV ) is a matrix formed by zeroing out the non-diagonal elements of U>MV , M
is an autoencoder input matrix of size m ⇥ n, and U and V are autoencoder parameters of size
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Algorithm 1 DCO Algorithm
Require:
⌘ and ⌘a: learning rates of the model and autoencoders respectively. � 2 (0, 1]: pulling strength
that controls the searching scope of the model parameters. N : number of additional epochs used
to train the model after saturation. m: the size of the batch of gradients fed into autoencoders. ⌧ :
the period of updates of the model parameters in step 3. n: number of tasks. T = {T1, . . . , Tn}:
training data from task 1, 2, . . . , n.

for i = 1 to n do
# step 1: train model until convergence
repeat
⇠  randomly sample from Ti
x x� ⌘rxLi(x; ⇠)

until convergence
x⇤  x # Store model parameters

# step 2: continue training model for N additional epochs
for j = 1 to N do

repeat
⇠  randomly sample from Ti
x x� ⌘rxLce(x; ⇠)� �(x� x⇤)

until all samples are iterated
end for
x⇤
i  x # Store model parameters

# step 3: train autoencoder until convergence
repeat
g  0, G {}
for j = 1 to m do
⇠  randomly sample from Ti
g  g +rxLce(x; ⇠) # Accumulate gradients
G G [rxLce(x; ⇠) # Add gradients to the batch
if ⌧ divides j then
x x� ⌘g
g  0

end if
end for
G Gp

kGk2
2/m

# Normalize batch of gradients

W  W � ⌘a

mrWLmse(W ;G) # Update autoencoder parameters
x x� �(x� x⇤

i )
until convergence
Wi  W # Store autoencoder parameters
x x⇤

i # Restore model parameters
end for
Output x⇤

m⇥ k and n⇥ k respectively. Thus, the total number of parameters of the proposed autoencoder
is k(n+m), which is significantly lower than in case of traditional autoencoder (knm), especially
when n and m are large.

We use a separate encoder ENCl and decoder DECl for each layer l of the model M. We couple
them between layers using a common “feature vector” which is created by summing outputs of all
encoders. The proposed autoencoder is then formulated as

AE(G) = {DEC1(ENC(G)), . . . , DECL(ENC(G))}, (5)
where

ENC(G) =
X

l

ENCl(Gl), ENCl(Gl) = diag(U>
l GlVl), DECl(ENC(G)) = UlENC(G)V >

l ,
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G = {G1, G2, . . . , GL} is a set of matrices such that each matrix contains gradients of the model
for a given layer, and L is number of layers in the model. Finally, in order to enable processing
the gradients of the convolutional layers we reshape them from their original size o ⇥ i ⇥ w ⇥ h
to o⇥ iwh, where o is number of output channels, i is number of input channels, and w and h are
width and height of the kernel of the convolutional layer. We train the autoencoder with standard
mean square error loss Lmse(W ;G) = kAE(G)�Gk22, where W = {U1, V1, . . . , UL, VL} is set
of autoencoder’s parameters.
4.3 Algorithm description
The proposed algorithm comprises of three steps. In the first step we train the model M using the
loss function proposed in Equation 3 until convergence. In the second step, we continue to train the
model for additional N epochs to push its parameters deeper into the cone. Finally, in step 3 we train
the autoencoder. The algorithm’s pseudo code is captured in Algorithm 1.

5 Experiments
In this section we compare the performance of DCO with state-of-the-art continual learning methods:
EWC [1], SI [2], RWALK [9] and A-GEM [18], as well as SGD [5]. We use open source codes3.
Note that A-GEM was proposed in a single-epoch setup originally. For a fair comparison, we run
A-GEM for multiple epochs on training data. We consider three commonly used continual learning
data sets: Permuted MNIST, Split MNIST, and Split CIFAR-100. The details of data sets, data
processing, hyperparameter selection, and network architectures can be found in the Supplement.

Table 1: Average Error En (%)
Method Permuted Split Split

MNIST MNIST CIFAR-100
SGD 40.35 24.37 46.36
EWC 5.61 0.71 32.86

SI 6.66 0.82 32.25
RWALK 5.76 1.85 33.4
A-GEM 5.12 1.02 32.19

DCO 3.81 0.57 28.22

We consider the average error as our metric. If we
denote ej as test classification error of the model on
jth task, then the average error Ei on ith task (j  i) is
defined as Ei =

1
i

Pi
j=1 ej . In Table 1 we demonstrate

that DCO performs favorably compared to the baselines
in terms of the final average error. In Figure 4 we show
how the average error behaves when adding new tasks.
The figure reveals that DCO eventually achieves better
performance than other techniques on Split MNIST
data set and it consistently outperforms other methods for Permuted MNIST and Split CIFAR-100.

Figure 4: Average error versus the number of tasks. Zoomed plot (original plot is shown in Figure 7
in the Supplement); Left: Permuted MNIST middle: Split MNIST right: Split CIFAR-100.

6 Conclusion
This paper elucidates the interplay between the local geometry of a deep learning optimization
landscape and the quality of a network’s performance in a continual learning setting. We derive a
new continual learning algorithm counter-acting the process of catastrophic forgetting that explores
the plausible manifold of parameters on which all tasks achieve good performance based on the
knowledge of its geometric properties. Experiments demonstrate that this online algorithm achieves
improvement in performance compared to more common approaches, which makes it a plausible
method for solving a continual learning problem. Due to explicitly characterizing the manifold shared
between the tasks, our work potentially provides a tool for better understanding how quickly the
learning capacity of the network with a fixed architecture is consumed by adding new tasks and
identifying the moment when the network lacks capacity to accommodate new coming task and thus
has to be expanded. This direction will be explored in the future work.

3https://github.com/facebookresearch/agem
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