
Tailoring: encoding inductive biases by
optimizing unsupervised objectives at prediction time

Ferran Alet, Kenji Kawaguchi, Maria Bauza,
Nurullah Giray Kuru, Tomás Lozano-Pérez, Leslie Pack Kaelbling

MIT - CSAIL
{alet,kawaguch,bauza,ngkuru,tlp,lpk}@mit.edu

Abstract

From CNNs to attention mechanisms, encoding inductive biases into neural net-
works has been a fruitful source of improvement in machine learning. Auxiliary
losses are a general way of encoding biases in order to help networks learn better
representations by adding extra terms to the loss function. However, since they are
minimized on the training data, they suffer from the same generalization gap as
regular task losses. Moreover, by changing the loss function, the network is opti-
mizing a different objective than the one we care about. In this work we solve both
problems: first, we take inspiration from transductive learning and note that, after
receiving an input but before making a prediction, we can fine-tune our models on
any unsupervised objective. We call this process tailoring, because we customize
the model to each input. Second, we formulate a nested optimization (similar to
those in meta-learning) and train our models to perform well on the task loss after
adapting to the tailoring loss. The advantages of tailoring and meta-tailoring are
discussed theoretically and demonstrated empirically on several diverse examples:
encoding inductive conservation laws from physics, increasing robustness to ad-
versarial examples, meta-tailoring with contrastive losses to improve theoretical
generalization guarantees, and increasing performance in model-based RL.

1 Introduction

The key to successful generalization in machine learning is the encoding of useful inductive biases.
A variety of mechanisms, from parameter tying to data augmentation, have proven useful but there is
no systematic strategy for designing and implementing these biases.

Auxiliary losses are a paradigm for encoding a wide variety of biases, constraints and objectives,
helping networks learn better representations and generalize more broadly. They add an extra term
to the task loss and minimize it over the training data or, in semi-supervised learning, on an extra
set of unlabeled data. However, they have two major difficulties:

1. Auxiliary losses are only minimized at training time, but not for the query points. This
causes a generalization gap between training and testing, in addition to that of the task loss.

2. By minimizing the sum of the task loss plus the auxiliary loss, we are optimizing a different
objective than the one we care about (only the task loss).

In this work we propose a solution to each problem:

1. We use ideas from transductive learning to minimize the auxiliary loss at the query by
running an optimization at prediction time, eliminating the generalization gap for the
auxiliary loss. We call this process tailoring, because we customize the model to each query.

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.

Figure 1: Comparison of several learning settings with offline computation in the orange boxes
and online computation in the green boxes, with tailoring in blue. For meta-tailoring training,
τ(θ,Ltailor, x) = arg minθ′≈θ Ltailor(x, θ′) represents the tailoring process resulting in θx. Although
tailoring and meta-tailoring are best understood in supervised learning, they can also be applied in
reinforcement learning, as shown in section 4.3.

2. We use ideas from meta-learning to learn a model that performs well on the task loss
assuming that we will be optimizing the auxiliary loss. This meta-tailoring effectively trains
the model to leverage the unsupervised tailoring loss to minimize the task loss.

Tailoring a predictor In classical inductive supervised learning, an algorithm consumes a training
dataset of input-output pairs, ((xi, yi))

n
i=1, and produces a set of parameters θ̂ by minimizing a super-

vised loss
∑n
i=1 Lsup(fθ(xi), yi) and, optionally, an unsupervised auxiliary loss

∑n
i=1 Lunsup(θ, xi).

These parameters specify a hypothesis fθ̂(·) that, given a new input x, generates an output ŷ = fθ̂(x).
This problem setting misses a substantial opportunity: before the learning algorithm sees the query
point x, it has distilled the data down to a set of parameters, which are frozen during inference, and
so it cannot use new information about the particular x that it will be asked to make a prediction for.

Vapnik recognized an opportunity to make more accurate predictions when the query point is known,
in a framework that is now known as transductive learning [Vapnik, 1995, Chapelle et al., 2000]. In
transductive learning, a single algorithm consumes both labeled data, ((xi, yi))

n
i=1, and a set of input

points for which predictions are desired, (x(j))j , and produces predicted outputs (ŷ(j))j for each of
the queries, as illustrated in the top row of figure 1. In general, however, we do not know queries a
priori, and instead we want an inductive rule that makes predictions on-line, as queries arrive. To
obtain a prediction function from a transductive system, we would need to encapsulate the entire
learning procedure inside the prediction function. This strategy would achieve our objective of taking
x into account at prediction time, but would be computationally much too slow.

We observe that this strategy for combining induction and transduction would perform very similar
computations for each prediction, sharing the same training data and objective. We can use ideas
from meta-learning to find a shared “meta-hypothesis” that can then be efficiently adapted to each
query (treating each prediction as a task). As shown in the third row of figure 1, we first run
regular supervised learning to obtain parameters θ̂; then, given a query input x, we fine-tune θ̂ on
an unsupervised loss (Ltailor) to obtain customized parameters θx and use them to make the final
prediction: fθx(x). We call this process tailoring, because we adapt the model to each particular
input for a customized fit. Notice that tailoring optimizes the loss at the query point, eliminating the
generalization gap on the auxiliary loss.

Meta-tailoring Since we will be applying tailoring at prediction time, it is natural to anticipate
this adaptation during training, resulting in a two-layer optimization similar to those used for meta-

2

learning. Because of this similarity, we call this process, illustrated in the bottom row of figure 1,
meta-tailoring. Now, rather than letting θ̂ be the direct minimizer of the supervised loss, we set it to

θ̂ ∈ arg min
θ

n∑
i=1

Lsup(fτ(θ,Ltailor,xi)(xi), yi).

Notice that by optimizing this nested objective, the outer process is now optimizing the only objective
we care about, Lsup, instead of a proxy combination of Lsup and Lunsup. At the same time, we are
learning to leverage the unsupervised tailoring losses in the inner optimization to affect the model
before making the final prediction, both during training and at prediction time.

In many settings, we wish to make predictions for a large number of query points in a (mini-)batch,
but because tailoring adapts to every point, we must take extra care to be sure it can run efficiently in
parallel. Inspired by conditional normalization [Dumoulin et al., 2016] we propose adding element-
wise affine transformations and only adapting these parameters in the inner optimization. This allows
us totailor outputs for multiple inputs in parallel, without inputs affecting each other’s computations.
We prove theoretically, in section 3, and provide experimental evidence, in section 4.1, that
optimizing these parameters alone has enough capacity to minimize a large class of tailoring losses.

Losses for tailoring Tailoring can be used any time we are making a prediction and have an
unsupervised loss that can be minimized on the current input; although we mostly focus on supervised
learning, tailoring can also be applied to reinforcement learning, as shown in section 4.3. There are
many types of tailoring losses that may be useful; here we enumerate three broad classes.

Losses imposing priors and constraints satisfied by the correct predictions, such as conservation of
momentum and energy when learning a physics model, symmetry under specific transformations, or
cycle-consistency when learning to translate between two languages. We show that tailoring a loss
of this type improves predictive losses in section 4.1, where we model a planetary system. We can
also leverage soft priors; for instance, in section 4.3 we show how encouraging action-conditional
predictions to be likely under an action-unconditional model can improve model-based RL.

Losses that help learn better representations, such as the contrastive losses [Hadsell et al., 2006]
explored in semi-supervised learning, or learning to predict one part of the input from another
part,such as depth from RGB [Mirowski et al., 2016]. In section A.1 we show how tailoring with a
contrastive loss improves supervised prediction performance.

Losses informed by theoretical guarantees. The guarantees of many theorems depend on unsuper-
vised quantities, such as smoothness or distance to the prediction boundary. By optimizing such quanti-
ties on the query, or on the surrounding area, we can get better guaranteed performance. In section 4.2,
we show this on adversarial examples, where smooth predictions around the test point are critical.

Contributions In summary, our contributions are the following:

1. Introducing tailoring, a new framework for encoding inductive biases by minimizing unsuper-
vised losses at prediction time, with theoretical guarantees and broad potential applications.

2. Formulating meta-tailoring, which adjusts the outer objective to optimize only the task loss,
and developing a new algorithm, CNGRAD, for efficient meta-tailoring.

3. Demonstrating tailoring in four domains: encoding conservation laws in a physics prediction
problem, increasing resistance to adversarial examples by increasing local smoothness
at prediction time, making model-based reinforcement learning more data-efficient, and
improving theoretical guarantees of prediction quality by tailoring with a contrastive loss.

For conciseness, the theoretical guarantees behind meta-tailoring with contrastive losses and with
general losses have been moved to appendix A.

2 Related work

There are other learning frameworks that perform optimization at prediction time, such as
energy-based models [Ackley et al., 1985, Hinton, 2002, LeCun et al., 2006] or models that embed
optimization layers in neural networks, whose outputs are the solution of an optimization problem

3

defined by the previous layer [Amos and Kolter, 2017, Tschiatschek et al., 2018]. In contrast to
these lines of work, we optimize the parameters of the model, not the hidden activations or the output.

Meta-learning [Schmidhuber, 1987, Bengio et al., 1995, Thrun and Pratt, 1998] has the same two-
level optimization structure as our work, but focuses on multiple prediction tasks, each of which has its
own separate training data. Most optimization-based meta-learning algorithms can be converted to the
meta-tailoring setting. There is a particularly clear connection to MAML [Finn et al., 2017], when
we let the tailoring method be a step of gradient descent: τ(θ̂,Ltailor, x) = θ̂ − λ∇θ̂L

tailor(x, θ̂).
There are other optimization-based approaches to meta-learning whose adaptations can be
batched [Zintgraf et al., 2018, Rakelly et al., 2019, Alet et al., 2019]. In particular, FiLM net-
works [Perez et al., 2018], which predict customized conditional normalization layers, have been used
in meta-learning [Zintgraf et al., 2018, Requeima et al., 2019]. By optimizing the conditional normal-
ization layers themselves, our method CNGRAD is simpler, while remaining provably sufficiently ex-
pressive. More importantly, we can add to a trained model CNGRAD layers with weights initialized to
the identity and adapt them to perform tailoring or fine-tune the model with a meta-tailoring objective.

Tailoring is inspired by transductive learning. However, transductive methods, because they
operate on a batch of unlabeled points, are able to make use of the underlying distribu-
tional properties of those points. On the other hand, tailoring does not need to receive the
queries before doing the bulk of the computation.Within transductive learning, local learn-
ing [Bottou and Vapnik, 1992] has input-dependent parameters, but it uses similarity in raw input
space to select a few data-points instead of reusing the prior learned across the whole data. Some
methods [Garcia and Bruna, 2017, Liu et al., 2018] in meta-learning propagate predictions along the
test samples in a classic transductive fashion.

Optimization processes similar to tailoring and meta-tailoring have been proposed before, to adapt
to different types of variations between training and testing. [Sun et al., 2019] propose to adapt
to a change of distribution with few samples by unsupervised fine-tuning at test-time, applying it
with a loss of predicting whether the input has been rotated. Other methods in the meta-learning
setting exploit test samples of a new task by minimizing either entropy [Dhillon et al., 2020] or a
learned loss [Antoniou and Storkey, 2019] in the inner optimization. Finally, [Wang et al., 2019]
uses entropy in the inner optimization to adapt to large scale variations in image segmentation. In
contrast, we propose (meta-)tailoring as a general effective way to impose inductive biases in the
classic machine learning setting. We also unify tailoring and meta-tailoring with arbitrary losses
under one paradigm, theoretically and empirically showing the advantage of each modification to
classic inductive learning. Appendix G shows experimental results analyzing why using prior work
on adapting to the test distribution performs worse than tailoring (which, in turn, performs worse than
meta-tailoring) in the classic ML setting where test and training come from the same distribution.

3 CNGRAD: a simple algorithm for expressive, efficient tailoring

In the previous sections, we have discussed the principal motivation and theoretical advantages of
(meta-)tailoring. However, there is a remaining issue for efficient GPU computations: whereas one
can efficiently parallelize the evaluation of a single model over a batch across inputs, it is challenging
to efficiently parallelize the evaluation of multiple tailored models over a batch. To overcome this
issue, by building on CAVIA [Zintgraf et al., 2018] and WarpGrad [Flennerhag et al., 2019], we
propose CNGRAD which adapts only conditional normalization parameters and enables efficient
GPU computations for (meta-)tailoring. CNGRAD can also be used in regular meta-learning; details
and pseudo-codes of both versions can be found in appendix D.

As is done in batch-norm [Ioffe and Szegedy, 2015] after element-wise normalization, we can imple-
ment an element-wise affine transformation with parameters (γ, β), scaling and shifting the output
h

(l)
k (x) of each k-th node at l-th hidden layer independently: γ(l)

k h
(l)
k (x) + β

(l)
k . In conditional

normalization, [Dumoulin et al., 2016] train a collection of (γ, β) in a multi-task fashion to learn
different tasks with a single network. We propose to bring this concept to the meta-learning and
(meta-)tailoring settings and adapt the affine parameters (γ, β) to each query . For meta-tailoring,
the inner optimization minimizes the tailoring loss at an input x by adjusting the affine parameters
and the outer optimization adapts the rest of the network. Similar to MAML [Finn et al., 2017],
we implement a first-order version, which does not backpropagate through the optimization, and a
second-order version, which does. We can efficiently parallelize computations of multiple tailored

4

models over a (mini-)batch in a GPU in the same way as that in a classic induction model, because
the adapted parameters only require element-wise multiplications and additions.

CNGRAD is widely applicable, since we can add these adaptable affine parameters to any hidden
layer.While we are only changing a tiny portion of the network, we prove below that, under realistic
assumptions, we can minimize the inner tailoring loss using only the affine parameters. However, it
is worth noting that we still need the entire network to minimize the outer meta-objective.

To analyze properties of the adaptable affine parameters, let us decompose θ into θ = (w, γ, β),
where the w contains all the weight parameters (including bias terms), and the (γ, β) contains
all the affine parameters. Given arbitrary coefficients η1, . . . , ηng ∈ R and an arbitrary function
(fθ(x), x) 7→ `tailor(fθ(x), x), let Ltailor(x, θ) =

∑ng
i=1 ηi`tailor(fθ(g

(i)(x)), x), where g(1), . . . , g(ng)

are arbitrary input augmentation functions at prediction time. Note that ng is typically small (ng � n)
in meta-tailoring; e.g., ng = 1 in the method in Section 4.1 regardless of the size of the dataset n.

Corollary 1 states that for any given ŵ, if we add any non-degenerate Gaussian noise δ as ŵ + δ with
zero mean and any variance on δ, the global minimum value with respect to all parameters (w, γ, β)
can be achieved by optimizing only the affine parameters (γ, β), with probability one.

Assumption 1. (Common activation) The activation function σ(x) is real analytic, monotonically
increasing, and the limits exist as: limx→−∞ σ(x) = σ− > −∞ and limx→+∞ σ(x) = σ+ ≤ +∞.

Theorem 1. For any x ∈ X that satisfies ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j), and for
any fully-connected neural network with a single output unit, at least ng neurons per hidden layer,
and activation functions that satisfy Assumption 1, the following holds: infw,γ,β Ltailor(x,w, γ, β) =
infγ,β Ltailor(x, w̄, γ, β) for any w̄ /∈ W where Lebesgue measure ofW ⊂ Rd is zero.

Corollary 1. Under the assumptions of Theorem 1, for any ŵ ∈ Rd, with probability one over
randomly sampled δ ∈ Rd accordingly to any non-degenerate Gaussian distribution, the following
holds: infw,γ,β Ltailor(x,w, γ, β) = infγ,β Ltailor(x, ŵ + δ, γ, β) for any x ∈ X .

The assumption and condition in theorem 1 are satisfied in practice(see Appendix B for more
details). Therefore, CNGRAD is a practical and computationally efficient method to implement
(meta-)tailoring.

4 Experiments

4.1 Tailoring to impose symmetries and constraints at prediction time

Constructing inductive biases that exploit invariances and symmetries is an established strategy
for boosting performance in machine learning. During training, we often regularize our networks
to satisfy certain criteria; however, this does not guarantee that these criteria will be satisfied out-
side the training dataset [Suh and Tedrake, 2020]. Another option is to construct ad hoc neural
network architectures to exploit constraints for important problems, such as using Hamiltonian neural
networks [Greydanus et al., 2019] to impose energy (but not momentum) conservation. Tailoring pro-
vides a general solution to this problem by adapting the model at prediction time to satisfy the criteria.
In meta-tailoring, we also train the system to make good predictions after satisfying the constraint.

We demonstrate this use of tailoring by enforcing physical conservation laws to more accurately
predict the evolution of a 5-body planetary system governed by gravitational forces. This prediction
problem is challenging, as m-body systems become chaotic for m > 2. We generate a supervised-
learning dataset with positions, velocities and masses of all 5 bodies as inputs and the changes in
position and velocity at the next time-step as targets. Appendix F describes the dataset in greater detail.

To predict the data, we use a 3-layer feed-forward network and apply a tailoring loss based on the
laws of conservation of energy and momentum. More concretely, we take the original predictions and
adapt our model using the L1 loss between the initial and final energy and momentum of the whole
system. Ensuring this conservation can improve predictions, but notice that minimizing the tailoring
loss alone does not guarantee good predictions: predicting that the output equals the input conserves
energy and momentum perfectly, but is not correct.

Tailoring adapts some parameters in the network in order to improve the tailoring loss. An alternative
for enforcing conservation would be to adapt the output y value directly. Table 1 compares the

5

Method loss relative

Inductive learning .041 -
Opt. output(50 st.) .041 (0.7 ± 0.1)%
6400-spl. TTT(50st.) .040 (3.6 ± 0.2)%

Tailoring(1 step) .040 (1.9 ± 0.2)%
Tailoring(5 st.) .039 (6.3 ± 0.3)%
Tailoring(10 st.) .038 (7.5 ± 0.1)%
Meta-tailoring(0 st.) .030 (26.3 ± 3.3)%
Meta-tailoring(1 st.) .029 (29.9 ± 3.0)%
Meta-tailoring(5 st.) .027 (35.3 ± 2.6)%
Meta-tailoring(10 st.) .026 (36.0 ± 2.6)%

Table 1: Test MSE loss for different methods; the
second column shows the relative improvement
over basic inductive supervised learning. The test-
time training (TTT) baseline uses a full batch of
6400 test samples to adapt, not allowed in regular
SL. With a few gradient steps, tailoring signifi-
cantly over-performs all baselines. Meta-tailoring
improves even further, with 35% improvement.

Figure 2: Optimization at prediction time on the
planet data; each path going from right to left as
we minimize the physics tailoring loss. We use
a small step size to illustrate the path. Tailoring
and the two baselines share only differ in their
test-time computations, thus sharing their starts.
Meta-tailoring has a lower starting loss, faster op-
timization, and no overfitting to the tailoring loss.

predictive accuracy of inductive learning to direct output optimization as well as tailoring and meta-
tailoring, using varying numbers of gradient steps. We observe that tailoring is more effective than
adapting the output, as the parameters provide a prior on what changes are more natural. For meta-
tailoring, we try both first-order and second-order versions of CNGRAD: the first-order version gave
slightly better results, possibly because it was trained with a higher tailor learning rate (10−3) with
which the second-order version meta-training was unstable (we thus used 10−4). More details can
be found in Appendix F. Interestingly, meta-tailoring without any query-time tailoring steps already
performs much better than the original model, even though both models have almost the same number
of parameters and can overfit the dataset.We conjecture meta-tailoring training is adding an inductive
bias that guides optimization towards learning a more generalizable model, even without tailoring at
test time. Finally, plot 2 shows the prediction-time optimization paths for different methods.

4.2 Tailoring for robustness against adversarial examples

Despite their successes, neural networks remain susceptible to the problem of adversarial exam-
ples [Biggio et al., 2013, Szegedy et al., 2013]: targeted small perturbations of an input can cause the
network to mis-classify it. One approach is to make the prediction function smooth via adversarial
training [Madry et al., 2017]; however, this only ensures smoothness in the training points and
constraining our model to be smooth everywhere makes it lose capacity. This is a perfect opportunity
for applying (meta-)tailoring, since we can ask for smoothness a posteriori, only on the specific query.

We apply meta-tailoring to robustly classifying CIFAR-10 [Krizhevsky et al., 2009] and Ima-
geNet [Deng et al., 2009] images, tailoring predictions so that they are locally smooth. We meta-tailor
our classifier using (the first-order version of) CNGRAD and a tailoring loss that enforces smoothness
on the entire vector of features of the penultimate layer in the neural network (denoted gθ(x)):

Ltailor(x, θ) = E[cos_dist(gθ(x), gθ(x+ δ))], δ ∼ N(0, ν2), (1)

where cos_dist(v1, v2) is the cosine distance between vectors v1 and v2. This loss is inspired
by [Ilyas et al., 2019], who argue that adversarial examples are caused by features which are predic-
tive, but non-robust to perturbations. In that way, our loss adjusts the model to ensure features are
locally robust at the input query before making a prediction. To keep inference fast, we approximate
this loss with a single sample, but it could be improved with more samples or more sophisticated
methods.

We build on the work of [Cohen et al., 2019], who developed a method for certifying the robustness
of a model via randomized smoothing. It samples several points from a Gaussian N(x, σ2) around

6

σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ACR

0.25 (Inductive) RandSmooth 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.470
Meta-tailored 0.72 0.55 0.00 0.00 0.00 0.00 0.00 0.494

0.50 (Inductive) RandSmooth 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.720
Meta-tailored 0.66 0.54 0.42 0.31 0.00 0.00 0.00 0.819

1.00 (Inductive) RandSmooth 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
Meta-tailored 0.52 0.45 0.36 0.31 0.24 0.20 0.15 1.032

Figure 3: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the ImageNet dataset. Meta-tailoring improves the Average Certification Radius by
5.1%, 13.8%, 19.6% respectively. Results for [Cohen et al., 2019] are taken from [Zhai et al., 2020].

the query and, if there is enough agreement in classification, it provides a certificate that the example
cannot be adversarially modified by a small perturbation to have a different class. We show that meta-
tailoring improves the original randomized smoothing method, testing for σ = 0.25, 0.5, 1.0. For
simplicity, we use ν = 0.1 for all experiments. We initialized with the weights of [Cohen et al., 2019]
to speed up training in all ImageNet experiments and to avoid training divergence for CIFAR-10,
σ = 1 (this divergence had already been noted by [Zhai et al., 2020]). Note that we could leverage
these pre-trained weights because of CNGRADcan start from a pre-trained model by initializing the
extra affine layers to the identity. Finally, we use σ′ =

√
σ2 − ν2 ≈ 0.23, 0.49, 0.995 so that the

points used in our tailoring loss come from N(x, σ2).

In table 3, we show results on Imagenet where we improve the average certification radius by
5.1%, 13.8%, 19.6% respectively. In table 6, in the appendix, we show results on CIFAR-10 where
we improve the average certification radius by 8.6%, 10.4%, 19.2%. We chose to meta-tailor this
randomized smoothing method because it represents a strong standard in certified adversarial
defenses, but it is important to note that there have been advances on this method that sometimes
achieve better results than those we present here [Zhai et al., 2020, Salman et al., 2019], see
appendix I. However, it is likely that these methods could also be improved through meta-tailoring.

These experiments only scratch the surface of what tailoring allows for adversarial defenses: usually,
the adversary looks at the model and gets to pick a particularly bad perturbation x+ δ. With tailoring,
the model responds, by changing to weights θx+δ. This leads to a game, where both weights and
inputs are perturbed, similar to: max|δ|<εx min|∆|<εθ Lsup (fθ+∆(x+ δ), y) . However, since we
don’t get to observe y; we optimize the weight perturbation by minimizing Ltailor instead.

4.3 Tailoring to improve the performance of model-based RL

In model-based reinforcement learning (MBRL) we consider a Markov decision process (MDP) with
state-space S , action-space A and unknown transition distribution p(s′|s, a). Here, we assume access
to a known reward function r(s, a), although this assumption could be relaxed. In MBRL we learn a
deterministic transition model Tθ(s, a)→ s′ from past experience and use it to either learn a policy
or (as done here) to plan good actions by maximizing the reward over some planning horizon H:

a∗t...t+H = arg max
at...t+H−1

H∑
h=1

r (ŝt+h) = arg max
at...t+H−1

H∑
h=1

r (Tθ (st, at...t+h−1))

where Tθ (st, at...t+h−1) = Tθ (. . . Tθ (Tθ (st, at) , at+1) , . . . , at+h−1), i.e. applying Tθ h times.
We also often apply receding-horizon control, where we plan with horizon H , but then only apply the
first action at, observe the next state at+1 and re-plan again. However, in this setting we are optimizing
the output of the transition model with respect to (part of) the input: the actions. Similar to adversarial
examples in the previous section, this often results in the action optimisation finding regions of the
input-space where the model makes overly-optimistic predictions. In order to improve performance it
has been previously proposed to regularize the confidence of the models [Ha and Schmidhuber, 2018],
to make them uncertainty-aware by learning an ensemble of models [Nagabandi et al., 2020], or to
make pessimistic predictions [Kidambi et al., 2020], among many other approaches. Similar to the
adversarial examples experiments, meta-tailoring opens new simple ways of making transition models
more robust.

7

In this section, we explain a simple way of using meta-tailoring to improve transition models in
MBRL. In particular, we can learn an action-independent model M(st) → p (st+1) that outputs
a probability distribution for the next state given the current state, independently of the action at.
This model presents a trade-off with respect to the original model T (s, a): on the one hand, it is
intrinsically uncertain since it lacks part of the information (the actions); we thus output a probability
distribution in the form of a mixture of Gaussians to model this uncertainty. On the other hand, it has
the advantage of not being “hackable" by the action-selection process, making the planner unable to
find overly confident regions.

Figure 4: Meta-tailoring improves the performance
of MBRL in dclaw, a complex manipulation prob-
lem, especially for low-data regimes where the
transition model is imperfect and the prior is thus
useful. We plot one confidence interval for the me-
dian reward bootstrapped from 16 different runs
per configuration. Further increasing the tailoring
learning rate results in (meta-)training instabilities
because the inner loop is highly variable.

More concretely, we first train an action-
independent prediction model to maximize the
log-likelihood M(st) (st+1). Then, when mak-
ing predictions with Tθ(st, at) we use the
action-independent log-likelihood of the action-
dependent predictions as the tailoring loss:
−M(st) (Tθ(st, at)), with a minus sign be-
cause we want to maximize the log-likelihood.
From this we obtain tailored parameters θ(st,at)

and use them to make the final prediction. In
meta-tailoring fashion we train these final predic-
tions to be close to the truth Tθ(st,at)(st, at) ≈
st+1. In practice, we use the first-order version
of CNGRAD.

We use this idea and build on
PDDM [Nagabandi et al., 2020], which re-
cently showed great results in model-based
reinforcement learning for robotic manipulation
problems. Since they use an ensemble of
deep networks Ti(st, at) (to make robust
predictions), we independently meta-tailor each
network to leverage a single action-independent
learned prior M(st), leaving the rest of
PDDM the same. In figure 4, we observe that
meta-tailoring improves the performance of the
overall predictive model, especially during early
parts of training when the action-conditioned
model has not become accurate. As expected, once the action-conditioned model is good enough (to
get positive reward) meta-tailoring is not as useful as we do not need the action-independent prior
anymore. For more experimental details, see appendix J.

5 Conclusion

We have presented tailoring, a simple way of embedding a powerful class of inductive biases into
models, by minimizing unsupervised objectives at prediction time. We have leveraged the generality
of auxiliary losses and improved them in two key ways: first, we eliminate the generalization gap
on the auxiliary loss by optimizing it on the query point instead of on a training set; second, we
change the optimization to minimize only the task loss in the outer optimization, and the tailoring loss
in the inner optimization. This results in the whole network optimizing the only objective we care
about, instead of a proxy loss. Finally, we have formalized these intuitions by proving the benefits of
meta-tailoring under mild assumptions.

The framework is broadly applicable, as one can vary the model, the unsupervised loss and the
task loss. We have shown its applicability in three diverse domains: physics prediction time-series,
contrastive learning, and adversarial robustness. We also provide a simple algorithm,CNGRAD,
to make meta-tailoring practical with little additional code. Currently, most unsupervised or
self-supervised objectives are optimized in task-agnostic ways; instead, meta-tailoring provides a
generic way to make them especially useful for particular applications. It does so by learning how
to best leverage the unsupervised loss to perform well on the final task we care about.

8

