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Due to the page limit this appendix only contains appendix A-D, for appendix E-J see the arxiv
version of this work:https://arxiv.org/abs/2009.10623.

A Theoretical motivations of meta-tailoring

In this section, we study potential advantages of meta-tailoring from the theoretical viewpoint,
formalizing the intuitions conveyed in the introduction. By acting symmetrically during training and
prediction time, meta-tailoring allows us to closely relate its training and expected losses, whereas
tailoring in general may make them less related.

A.1 Meta-tailoring with a contrastive tailoring loss

Contrastive learning [Hadsell et al., 2006] has seen significant successes recently in problems of semi-
supervised learning from images [Oord et al., 2018, He et al., 2019, Chen et al., 2020]. The main
idea is to create multiple versions of each training image, and learn a representation in which variations
of the same image are very close and variations of different images are far apart. Typical variations
involve cropping, color distortions and rotation. We show theoretically that, under reasonable
conditions, meta-tailoring using a particular contrastive loss Lcont as Ltailor = Lcont helps us improve
generalization errors in expectation compared with performing classical inductive learning.

When using meta-tailoring, we define θx,S to be the θx obtained with a training dataset S =
((xi, yi))

n
i=1 and tailoring with the contrastive loss at the prediction point x. Theorem 2 pro-

vides an upper bound on the expected supervised loss Ex,y[Lsup(fθx,S (x), y)] in terms of the
expected contrastive loss Ex[Lcont(x, θx,S)] (which is defined and analyzed in more detail in
Appendix C), the empirical supervised loss 1

n

∑n
i=1 Lsup(fθxi,S (xi), yi) of the meta-tailoring al-

gorithm, and the uniform stability ζ of the meta-tailoring algorithm. As a complement, in-
stead of using the uniform stability ζ, Theorem 6 (detailed in appendix E) provides a similar
bound with the Rademacher complexity [Bartlett and Mendelson, 2002] Rn(Lsup ◦ F) of the set
Lsup ◦ F = {(x, y) 7→ Lsup(fθx(x), y) : (x 7→ fθx(x)) ∈ F}. All proofs in this paper are deferred
to Appendix E.

Definition 1. Let S = ((xi, yi))
n
i=1 and S′ = ((x′i, y

′
i))

n
i=1 be any two training datasets that

differ by a single point. Then, a meta-tailoring algorithm S 7→ fθx,S (x) is uniformly ζ-stable if
∀(x, y) ∈ X × Y, |Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ ζ

n .

Theorem 2. Let S 7→ fθx,S (x) be a uniformly ζ-stable meta-tailoring algorithm. Then, for any
δ > 0, with probability at least 1 − δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1,

the following holds: for any κ ∈ [0, 1], Ex,y[Lsup(fθx,S (x), y)] ≤ κEx
[
Lcont(x, θx,S)

]
+ (1− κ)J ,

where J = 1
n

∑n
i=1 Lsup(fθxi,S

(xi), yi) + ζ
n + (2ζ + c)

√
(ln(1/δ))/(2n), and c is the upper bound

on the per-sample loss as Lsup(fθ(x), y) ≤ c.

In the case of regular inductive learning we get a bound of the exact same form, except that we
have a single θ instead of a θx tailored to each input x. These differences are marked in bold
green in Definition 1 and Theorem 2. This theorem illustrates the effect of meta-tailoring on
contrastive learning, with its potential reduction of the expected contrastive loss Ex[Lcont(x, θx,S)].
In classic induction, we may aim to minimize the empirical contrastive loss 1

n̄

∑n̄
i=1 Lcont(xi, θ)

with n̄ potentially unlabeled training samples (in addition to the empirical supervised loss), which
incurs the additional generalization error of Ex[Lcont(x, θx,S)] − 1

n̄

∑n̄
i=1 Lcont(xi, θ). In contrast,

the meta-tailoring can avoid this extra generalization error by directly minimizing Ex[Lcont(x, θx,S)].

In the case where Ex[Lcont(x, θx,S)] is left large (e.g., due to large computational cost at prediction
time), Theorem 2 still illustrates competitive generalization bounds of meta-tailoring with small
κ, when compared to classical induction. For example, with κ = 0, it provides standard types
of generalization bounds with the uniform stability for meta-tailoring algorithms. Even in this
case, the bounds are not equivalent to those of classic induction, and there are potential benefits of
meta-tailoring, which are discussed in the following section with a more general setting.
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A.2 Meta-tailoring with general tailoring losses

The benefits of meta-tailoring go beyond contrastive learning: the following remark provides the gen-
eralization bounds for meta-tailoring with any tailoring loss Ltailor(x, θ) and an arbitrary supervised
loss Lsup(fθ(x), y).
Remark 1. For any function ϕ such that Ex,y[Lsup(fθ(x), y)] ≤ Ex[ϕ(Ltailor(x, θ))], Theorems 2
and 6 hold with the map Lcont being replaced by the function ϕ ◦ Ltailor.

Remark 1 shows the benefits of meta-tailoring through its effects on three factors: the expected
unlabeled loss Ex[ϕ(Ltailor(x, θx,S))], uniform stability ζ , and Rademacher complexityRn(Lsup ◦F).

It is important to note that meta-tailoring can directly minimize the expected unlabeled loss
Ex[ϕ(Ltailor(x, θx,S))], whereas classic induction can only minimize its empirical version, which
results in the additional generalization error on the difference between the expected unlabeled loss
and its empirical version. For example, if ϕ is monotonically increasing and Ltailor(x, θ) represents
the physical constraints at each input x (as in the application in section 4.1), then classic induction
requires the physical constraints of neural networks at the training points to generalize to the phys-
ical constraints at unseen (e.g., testing) points. Meta-tailoring avoids this requirement by directly
minimizing violations of the physical constraints at each point at prediction time.

Another potential benefit of meta-tailoring can be understood through the improvement in the
parameter stability ζθ defined such that ∀(x, y) ∈ X ×Y, ‖θx,S− θx,S′‖ ≤ ζθ

n , for all S, S′ differing
by a single point. In the case of the meta-tailoring method of θx,S = θ̂S − λ∇Ltailor(x, θ̂S), we
can obtain an improvement on the parameter stability ζθ if ∇Ltailor(x, θ̂S) can pull θ̂S and θ̂S′

closer so that ‖θx,S − θx,S′‖ < ‖θ̂S − θ̂S′‖, which is ensured, for example, if ‖ · ‖ = ‖ · ‖2 and
cos(v1, v2)‖v1‖‖v2‖ >

1
2 where cos(v1, v2) is the cosine similarity of v1 and v2, with v1 = θ̂S − θ̂S′ ,

v2 = λ(∇Ltailor(x, θ̂S) − ∇Ltailor(x, θ̂S′)) and v2 6= 0. Here, the uniform stability ζ and the
parameter stability ζθ are closely related as ζ ≤ Cζθ, where C is the upper bound on the Lipschitz
constants of the maps θ 7→ Lsup(fθ(x), y) over all (x, y) ∈ X × Y under the norm ‖ · ‖, since
|Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ C‖θx,S − θx,S′‖ ≤ Cζθ

n .

B On the conditions in Theorem 1 and Corollary 1

Assumption 1 is satisfied by using common activation functions such as sigmoid and hyperbolic
tangent, as well as softplus, which is defined as σα(x) = ln(1+exp(αx))/α and satisfies Assumption
1 with any hyperparameter α ∈ R>0. The softplus activation function can approximate the ReLU
function to any desired accuracy: i.e., σα(x)→ relu(x) as α→∞, where relu represents the ReLU
function.

In Theorem 1 and Corollary 1, the condition ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j) can be
easily satisfied, for example, by choosing g(1), . . . , g(ng) to produce normalized and distinguishable
argumented inputs for each prediction point x at prediction time. To see this, with normalization
‖g(i)(x)‖22 = ‖g(j)(x)‖22, the condition is satisfied if ‖g(i)(x) − g(j)(x)‖22 > 0 for i 6= j since
1
2‖g

(i)(x)− g(j)(x)‖22 = ‖g(i)(x)‖22 − g(i)(x)>g(j)(x).

In general, the normalization is not necessary for the condition to hold; e.g., orthogonality on g(i)(x)
and g(j)(x) along with g(i)(x) 6= 0 satisfies it without the normalization.

C Understanding the expected meta-tailoring contrastive loss

To analyze meta-tailoring for contrastive learning, we focus on the binary classification loss of the
form Lsup(fθ(x), y) = `cont(fθ(x)y − fθ(x)y′=¬y) where `cont is convex and `cont(0) = 1. With this,
the objective function θ 7→ Lsup(fθ(x), y) is still non-convex in general. For example, the standard
hinge loss `cont(z) = max{0, 1− z} and the logistic loss `cont(z) = s log2(1 + exp(z)) satisfy this
condition.

We first define the meta-tailoring contrastive loss Lcont(x, θ) in detail. In meta-tailoring contrastive
learning, we choose the probability measure of positive example x+ ∼ µx+(x) and the probability
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measure of negative example x−, y− ∼ µx−,y−(x), both of which are tailored for each input point
x at prediction time. These choices induce the marginal distributions for the negative examples
y− ∼ µy−(x) and x− ∼ µx−(x), as well as the unknown probability of y− = y defined by
ρy(µy−(x)) = Ey−∼µy− (x)(1{y− = y}). Define the lower and upper bound on the probability of
y− = y as ρ(x) ≤ ρy(µy−(x)) ≤ ρ̄(x) ∈ [0, 1).

Then, the first pre-meta-tailoring contrastive loss can be defined by

Lx
+,x−

cont (x, θ) = Ex+∼µx+ (x),

x−∼µx− (x)

[`cont(hθ (x)>(hθ (x+)− hθ (x−)))],

where hθ (x) ∈ RmH+1 represents the output of the last hidden layer, including a constant neuron
corresponding the bias term of the last output layer (if there is no bias term, hθ (x) ∈ RmH ). For
every z ∈ R2×(mH+1), define ψx,y,y−(z) = `cont((zy − zy−)hθ (x)), where zy ∈ R1×mH is the y-th
row vector of z. We define the second pre-meta-tailoring contrastive loss by

Lx
+,x−,y−

cont (x, θ) = max
y

Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,1,2([u+
h , u

−
h ]>)],

where u+
h = Ex+∼µx+ (x)[hθ (x+)] and u−h = Ex−∼µx− (x)[hθ (x−)]. Here, we decompose θ as θ =

(θ(1:H), θ(H+1)), where θ(H+1) = [W (H+1), b(H+1)] ∈ Rmy×(mH+1) represents the parameters at
the last output layer, and θ(1:H) represents all others.

Then, the meta-tailoring contrastive loss is defined by

Lcont(x, θ) =
1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)
.

Theorem 3 states that for any θ(1:H), the convex optimization of Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)

over θ(H+1) can achieve the value of Lx
+,x−

cont (x, θ) without the value of Lx
+,x−,y−

cont (x, θ), allowing
us to focus on the first term Lx

+,x−

cont (x, θ), for some choice of µx−,y−(x) and µx+(x).

Theorem 3. For any θ(1:H), µx−,y−(x) and µx+(x), the function θ(H+1) 7→ Lx
+,x−

cont (x, θ) +

Lx
+,x−,y−

cont (x, θ) is convex. Moreover, there exists µx−,y−(x) and µx+(x) such that, for any θ(1:H)

and any θ̄(H+1),

inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ) ≤ Lx
+,x−

cont (x, θ(1:H), θ̄(H+1)).

D Details and description of CNGRAD

In this section we describe CNGRAD in greater detail: its implementation, different variants and
run-time costs. Note that, although this section is written from the perspective of meta-tailoring, CN-
GRAD is also applicable to meta-learning, we provide pseudo-code in algorithm 2. The main idea
behind CNGRAD is to optimize only conditional normalization (CN) parameters γ(l), β(l) in the
inner loop and optimize all the other weights w in the outer loop. To simplify notation for imple-
mentation, in this subsection only, we overload notations to make them work over a mini-batch
as follows. Let b be a (mini-)batch size. Given X ∈ Rb×m0 , γ ∈ Rb×

∑
lml and β ∈ Rb×

∑
lml ,

let (fw,γ,β(X))i = fw,γi,βi(Xi) where Xi, γi, and βi are the transposes of the i-th row vectors of
X , γ and β, respectively. Similarly, Lsup and Ltailor are used over a mini-batch. We also refer to
θ = (w, γ, β).

Initialization of γ, β In the inner loop we always initialize γ = 1b,
∑
lml

, β = 0b,
∑
lml

. More
complex methods where the initialization of these parameters is meta-trained are also possible.
However, we note two things:

1. By initializing to the identity function, we can pick an architecture trained with regular
inductive learning, add CN layers without changing predictions and perform tailoring. In
this manner, the prediction algorithm is the same regardless of whether we trained with
meta-tailoring or without the CN parameters.
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2. We can add a previous normalization layer with weights γ′(l), β′(l) that are trained in the
outer loop, having a similar effect than meta-learning an initialization. However, we do not
do it in our experiments.

First and second order versions of CNGRAD: w affect Lsup in two ways: first, they di-
rectly affect the evaluation fw,γs,βs(X) by being weights of the neural network; second,
they affect ∇βLtailor,∇γLtailor which affects γs, βs which in turn affect Lsup. Similar to
MAML [Finn et al., 2017], we can implement two versions: in the first order version we only
take into account the first effect, while in the second order version we take into account both effects.
The first order version has three advantages:

1. It is very easy to code: the optimization of the inner parameters and the outer parameters are
detached and we simply need to back-propagate Ltailor with respect to β, γ and Lsup with
respect to w. This version is easier to implement than most meta-learning algorithms, since
the parameters in the inner and outer loop are different.

2. It is faster: because we do not back-propagate through the optimization, the overall compu-
tation graph is smaller.

3. It is more stable to train: second-order gradients can be a bit unstable to train; this required
us to lower the inner tailoring learning rate in experiments of section 4.1 for the second-order
version.

The second-order version has one big advantage: it optimizes the true objective, taking into account
how Ltailor will affect the update of the network. This is critical to linking the unsupervised loss to
best serve the supervised loss by performing informative updates to the CN parameters.

WarpGrad-inspired stopping of gradients and subsequent reduction in memory cost: Warp-
Grad [Flennerhag et al., 2019] was an inspiration to CNGRAD suggesting to interleave layers that
are adapted in the inner loop with layers only adapted in the outer loop. In contrast to WarpGrad,
we can evaluate inputs (in meta-tailoring) or tasks (in meta-learning) in parallel, which speeds up
training and inference. This also simplifies the code because we do not have to manually perform
batches of tasks by iterating through them.

WarpGrad also proposes to stop the gradients between inner steps; we include this idea as an optional
operation in CNGRAD, as shown in line 12 of 1. The advantage of adding it is that it decreases the
memory cost when performing multiple inner steps, as we now only have to keep in memory the
computation graph of the last step instead of all the steps, key when the networks are very deep like
in the experiments of section 4.2. Another advantage is that it makes training more stable, reducing
variance, as back-propagating through the optimization is often very noisy for many steps. At the
same time it adds bias, because it makes the greedy assumption that locally minimizing the decrease
in outer loss at every step will lead to low overall loss after multiple steps.

Computational cost: in CNGRAD we perform multiple forward and backward passes, compared
to a single forward pass in the usual setting. In particular, if we perform s tailoring steps, we execute
(s + 1) forward steps and s backward steps, which usually take the same amount of time as the
forward steps. Therefore, in its naive implementation, this method takes about 2s+ 1 times more
than executing the regular network without tailoring.

However, it is well-known that we can often only adapt the higher layers of a network, while keeping
the lower layers constant. Moreover, our proof about the capacity of CNGRAD to optimize a broad
range of inner losses only required us to adapt the very last CN layer γ(H), β(H). This implies we
can put the CN layers only on the top layer(s). In the case of only having one CN layer at the last
network layer, we only require one initial full forward pass (as we do without tailoring). Then, we
have s backward-forward steps that affect only the last layer, thus costing 1

H in case of layers of
equivalent cost. This leads to a factor of 1 + 2s

H in cost, which for s small and H large (typical for
deep networks), is a very small overcost. Moreover, for tailoring and meta-tailoring, we are likely to
get the same performance with smaller networks, which may compensate the increase in cost.

Meta-learning version: CNGRAD can also be used in meta-learning, with the advantage of being
provably expressive, very efficient in terms of parameters and compute, and being able to parallelize

15



Algorithm 1: CNGRAD for meta-tailoring

1 Subroutine Training(f , Lsup, λsup, Ltailor, λtailor, steps,((xi, yi))ni=1)
2 randomly initialize w // All parameters except γ, β; trained in outer loop
3 while not done do
4 for 0 ≤ i ≤ n/b do // b batch size
5 X,Y = xib:i(b+1), yib:i(b+1)

6 γ0 = 1b,
∑
lml

7 β0 = 0b,
∑
lml

8 for 1 ≤ s ≤ steps do
9 γs = γs−1 − λtailor∇γLtailor(w, γs−1, βs−1, X)

10 βs = βs−1 − λtailor∇βLtailor(w, γs−1, βs−1, X)
11 w = w − λsup∇wLsup (fw,γs,βs(X), Y ))
12 βs, γs = βs.detach(), γs.detach() // Optional operation: WarpGrad

detach to avoid back-proping through multiple steps;
reducing memory, and increasing stability, but adding bias.

13 return w
14 Subroutine Prediction(f , w, Ltailor, λ, steps, X) // For meta-tailoring & tailoring

// X contains multiple inputs, with independent tailoring processes
15 b = X.shape[0] // number of inputs
16 γ0 = 1b,

∑
lml

17 β0 = 0b,
∑
lml

18 for 1 ≤ s ≤ steps do
19 γs = γs−1 − λ∇γLtailor(w, γs−1, βs−1, X)

20 βs = βs−1 − λ∇βLtailor(w, γs−1, βs−1, X)
21 return fw,γsteps,βsteps(X)

across tasks. We show the pseudo-code for few-shot supervised learning in algorithm 2. There are
two changes to handle the meta-learning setting: first, in the inner loop, instead of the unsupervised
tailoring loss we optimize a supervised loss on the training (support) set. Second, we want to share
the same inner parameters γ, β for different samples of the same task. To do so we add the operation
"repeat_interlave" (PyTorch notation), which makes k contiguous copies of each parameter γ, β,
before feeding them to the network evaluation. In doing so, gradients coming from different samples
of the same task get pooled together. At test time we do the same for the k′ queries (k′ can be
different than k). Note that, in practice, this pooling is also used in meta-tailoring when we have
more than one data augmentation within Ltailor.
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Algorithm 2: CNGRAD for meta-learning
1 Subroutine Meta-training(f , Lsup, λinner, λouter, steps,T )
2 randomly initialize w // All parameters except γ, β; trained in outer loop
3 while not done do
4 for 0 ≤ i ≤ n/b do // b batch size
5 Xtrain, Ytrain = [ ], [ ]
6 Xtest, Ytest = [ ], [ ]
7 for ib ≤ j ≤ i(b+ 1) do
8 (inp, out) ∼k Tj // Take k samples from each task for training
9 X.append (inp) ;Y.append (out)

10 (query, target) ∼′k Tj // Take k′ samples from each task for
testing

11 X.append (query) ;Y.append (target)
// We can now batch evaluations of multiple tasks

Xtrain, Ytrain = concat (Xtrain, dim = 0) , concat (Ytrain, dim = 0)
12 Xtest, Ytest = concat (Xtest, dim = 0) , concat (Ytest, dim = 0)
13 γ0 = 1b,

∑
lml

14 β0 = 0b,
∑
lml

15 for 1 ≤ s ≤ steps do
// We now repeat the CN parameters k times so that samples

from the same task share the same CN parameters
16 γtrs−1, β

tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

17 γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

18 βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

19 γtests , βtests = γs.repeat_interleave(k′, 1), βs.repeat_interleave(k′, 1)

20 w = w − λouter∇wLsup
(
fw,γtests ,βtests

(Xtest), Ytest)
)

21 βs, γs = βs.detach(), γs.detach()
// WarpGrad detach to not backprop through multiple steps

22 return w
23 Subroutine Meta-test(f , w, Lsup, λinner,steps,Xtrain, Ytrain, Xtest)

// Assuming a single task, although we could evaluate multiple tasks
in parallel as in meta-training.

24 γ0 = 11,
∑
lml

// single γ, β because we only have one task
25 β0 = 01,

∑
lml

26 for 1 ≤ s ≤ steps do
27 γtrs−1, β

tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

28 γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

29 βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

30 γteststeps, β
test
steps = γsteps.repeat_interleave(k′, 1), βsteps.repeat_interleave(k′, 1)

31 return fw,γteststeps,β
test
steps

(Xtest)
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