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Appendix A Problem Statement and Related Work

Episodic Training A common approach is to match the training and evaluation conditions by
learning on Ctrain in an episodic manner, called learning episodes [21]. Note that training on support
set examples during episode evaluation is distinct from training on Ctrain. Many metric based meta-
learners and optimization based meta-learners use this training method, including Matching Networks
[22], Prototypical Networks [17], Relation Networks [18], and MAML [5].

Non-episodic Baselines Inspired by the transfer learning paradigm of pre-training and fine-tuning,
a natural non-episodic approach is to train a classifier on all examples in Ctrain at once. After training,
the final classification layer is removed, and this neural network is used as an embedding function f
that maps images xi to xi ∈ R feature representations, including those from novel classes. It then
fine-tunes the final classifier layer using support set examples from the novel classes. The models
are a function of the parameters of a softmax layer, θ ⊂ Rd. The softmax layer is formulated as the
similarity between image feature embeddings and the classifier parameters where θj is the parameters
for the jth class, sim is the cosine similarity function.

p(yi|xi; θ) =
exp(sim(xi, θyi

))∑
y′∈Y exp(sim(xi, θy′))

(1)

A.1 Related work

Few-Shot Learning Canonical approaches to few-shot learning include memory-based [7, 8, 13],
metric learning [15, 17, 18, 22], and optimization-based methods [5, 16]. However, recent studies
have shown that simple baseline learning techniques (i.e. simply training a backbone, then fine-tuning
the output layer on a few labeled examples) outperform or match performance of many meta-learning
methods [2, 4], prompting a closer look at the tasks [21] and contexts in which meta-learning is
helpful for few-shot learning [14, 20].
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Few-Shot Learning with Graphs Beyond the canonical few-shot literature, studies have explored
learning GNNs over episodes as partially observed graphical models [6] and using GCNs to transfer
knowledge of semantic labels and categorical relationships to unseen classes in zero-shot learning
[23]. Recently, Chen et al. presented a knowledge graph transfer network (KGTN), which uses
a Gated Graph Neural Network (GGNN) to propagate information from base categories to novel
categories for few-shot learning [1]. Other works use domain knowledge graphs to provide task
specific customization [19], and propagate prototypes [10, 11]. However, these models have highly
complex architectures and consist of multiple sub-modules that all seem to impact performance.

Appendix B Experimental Setup

B.1 Mini-ImageNet

Dataset The Mini-ImageNet dataset is a subset of ILSVRC-2012 [3]. The classes are randomly
split into 64, 16 and 20 classes for meta-training, meta-validation, and meta-testing respectively. Each
class contains 600 images. We use the commonly-used split proposed in [22].

Training details We pre-train the feature extractor on Ctrain using the method proposed by [12].
Activations in the penultimate layer are pre-computed and saved as feature embeddings of 640
dimensions to simplify the fine-tuning process. For an N -way K-shot problem, we sample N novel
classes per episode, sample K support examples from those classes, and sample 15 query examples.
During pre-training and meta-training stages, input images are normalized using the mean and
standard-deviation computed on ILSVRC-2012. We apply standard data augmentation including
random crop, left-right flip, and color jitter in both the training or meta-training stage. We use
ResNet-18, ResNet-50 [9], and WRN-28-10 [24] for our backbone architectures. For pre-training
WRN-28-10, we follow the original hyperparameters and training procedures for S2M2R [12]. For
meta-training ResNet-18, we follow the hyperparameters from [2]. At evaluation time, we choose
hyperparameters based on performance on the meta-validation set. Some implementation details are
adjusted for each method. Specifically, for ProtoNet and LEO, we include base examples during an
additional adaptation step per class. We show that these alterations have a minimal contribution to
performance in Appendix C.

B.2 ImageNet-FS

Dataset In the ImageNet-FS benchmark task, the 1000 ILSVRC-2012 categories are split into 389
base categories and 611 novel categories. From these, 193 of the base categories and 300 of the novel
categories are used during cross-validation and the remaining 196 base categories and 311 novel
categories are used for the final evaluation. Each base category has around 1,280 training images and
50 test images.

Training details We follow the procedure by [8] to pre-train the ResNet-50 feature extractor, and
adopt the Square Gradient Magnitude loss to regularize representation learning, which we scale by
0.005. The model is trained using the SGD algorithm with a batch size of 256, momentum of 0.9
and weight decay of 0.0005. The learning rate is initialized as 0.1 and is divided by 10 for every 30
epochs. During fine-tuning, we train for 10,000 iterations using the SGD algorithm with a batch size
of 256, momentum of 0.9, weight decay of 0.005, and learning rate of 0.01.

B.3 Label Graph

WordNet ontology ImageNet comprises of 82,115 ‘synsets’, which are based on the WordNet
ontology. For both the Mini-ImageNet and ImageNet-FS experiments, we first choose the synsets
corresponding to the output classes of each task – 100 for Mini-ImageNet and 1000 for ImageNet-FS.
ImageNet provides IS-A relationships over the synsets, defining a DAG over the classes. We only
consider the sub-graph consisting of the chosen classes and their ancestors. The classes are all leaves
of the DAG.

Training details The hyperparameter settings used for the node2vec-based graph regularization
objective are in line with typical values. For all experiments, we set p = 1, q = 1 and temperature
T = 2. We set the batch size to 128 for Mini-ImageNet and 256 for ImageNet-FS. Empirically, we
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find that setting the regularization λ scaling higher for lower shots results in better performance, and
set λ = 5, 3, 1 for 1-,2-, and 5-shot tasks respectively.

Appendix C Ablations

C.1 Mini-ImageNet Ablations

C.1.1 Model re-implementations with adaptation

For episodically-evaluated few-shot models, it is common practice to disregard base classes during
evaluation. To implement graph regularization, we include both base and novel classes during test
time and perform a further adaptation step per task. We show that the boost in performance is not due
to these modifications.

Table 1: Validation of baseline model modifications.

Model Backbone 1-shot 5-shot
ProtoNet ResNet-18 54.16 ± 0.82 73.68 ± 0.65
ProtoNet (adaptation)† ResNet-18 54.86 ± 0.73 74.14 ± 0.50
ProtoNet (adaptation) + Graph (Ours) ResNet-18 55.47 ± 0.73 74.56 ± 0.49

LEO† WRN 28-10 58.22 ± 0.09 74.46 ± 0.19
LEO (adaptation) WRN 28-10 57.85 ± 0.20 74.25 ± 0.17
LEO (adaptation) + Graph (Ours) WRN 28-10 60.93 ± 0.19 76.33 ± 0.17

C.1.2 Finding good parameter initializations for novel classes

Recent works have shown that good parameter initialization is important for few-shot adaptations
[14]. For example, Dhillion et al. [4] showed that initializing novel classifiers with the mean of the
support set improves few-shot performance.

Here, we explore various methods of incorporating graph relations to improve parameter initialization
for novel classes. We compare our proposed method with simpler methods to show that the our graph
regularization method is boosting performance in a non-trivial manner. For each method, we keep the
adaptation procedure the same, namely, the fine-tuning procedure described by Baseline++ [2].

We then vary parameter initialization using the following methods: (A) random initialization, (B)
initializing novel classes with the weights of the closest training class in graph distance in the
knowledge graph, (C) our method.

Table 2: Mini-Imagenet with different parameter initialization methods (in % measured over 600
evaluation iterations).

Model Backbone 1-shot 5-shot
S2M2R + Init A [12] WRN 28-10 64.93 ± 0.18 83.18 ± 0.11
S2M2R + Init B WRN 28-10 65.50 ± 0.81 83.32 ± 0.57
S2M2R + Init C WRN 28-10 66.93 ± 0.65 83.35 ± 0.53

C.2 ImageNet-FS Ablations

Here, we justify our model design decisions by considering alternatives. We first probe the benefits
of using random walk neighborhoods by defining N(y) as only nodes that have direct edges with y
(“child-parent loss”). We try separately learning label graph embeddings, and passing the information
to the classifier layer via “soft target” classification loss (“Independent graph w/ soft targets”). Results
show that computing the graph loss directly on the classifier parameters is important for performance.
Finally, we show that the quality of the label graph affects performance by removing layers of internal
nodes of the WordNet hierarchy, starting from the bottom-most nodes (“Remove last 5, 10 layers”).
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Table 3: Imagenet-FS ablations. Experiment setups, in order from the top: our proposed method,
using only child-parent edges, independently learning graph embeddings, removing 5 layers of the
ImageNet hierarchy, and removing 10 layers of the ImageNet hierarchy.

Ablation 1-shot
Ours 61.09
Child-parent loss 56.78
Independent graph w/ soft targets 56.22
Remove last 5 layers 57.80
Remove last 10 layers 54.86
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