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Abstract

Early few-shot classification work advocates for episodic training, i.e. training over
learning episodes each posing a few-shot classification task. However, the role of
this training regime remains poorly understood. Standard classification methods
(“pre-training”) followed by episodic fine-tuning have recently achieved strong
results. We aim to understand the role of this episodic fine-tuning phase through
an exploration of the effect of the “shot” (number of examples per class) that is
used during fine-tuning. We discover that using a fixed shot can specialize the
pre-trained model to solving episodes of that shot at the expense of performance
on other shots, in agreement with a trade-off recently observed in the context of
end-to-end episodic training. To amend this, we propose a shot-conditional form
of episodic fine-tuning, inspired from recent work that trains a single model on a
distribution of losses. We show that this flexible approach consitutes an effective
general solution that does not suffer disproportionately on any shot. We then subject
it to the large-scale Meta-Dataset benchmark of varying shots and imbalanced
episodes and observe performance gains in that challenging environment.

1 Introduction

Few-shot classification is the problem of learning a classifier using only a few examples. Specifically,
the aim is to utilize a training dataset towards obtaining a flexible model that has the ability to ‘quickly’
learn about new classes from few examples. Success is evaluated on a number of test episodes, each
posing a classification task between previously-unseen test classes. In each such episode, we are
given a few examples, or “shots”, of each new class that can be used to adapt this model to the task at
hand, and the objective is to correctly classify a held-out set of examples of the new classes.

A simple approach to this problem is to learn a classifier over the training classes, parameterized as
a neural network feature extractor followed by a classification layer. While the classification layer
is not useful at test time due to the class shift, the embedding weights that are learned during this
“pre-training” phase evidently constitute a strong representation that can be used to tackle test tasks
when paired with a simple “inference algorithm” (e.g. nearest-neighbour, logistic regression) to make
predictions for each example in the test episode given the episode’s small training set. Alternatively,
early influential works on few-shot classification (Vinyals et al., 2016) advocate for episodic training,
a regime where the training objective is expressed in terms of performance on a number of training
episodes of the same structure as the test episodes, but with the classes sampled from the training set.
It was hypothesized that this episodic approach captures a more appropriate inductive bias for the
problem of few-shot classification and would thus lead to better generalization.
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However, there is an ongoing debate about whether episodic training is in fact required for obtaining
the best few-shot classification performance. Notably, recent work (Chen et al., 2019; Dhillon et al.,
2020) proposed strong “pre-training” baselines that leverage common best practices for supervised
training (e.g. normalization schemes, data augmentation) to obtain a powerful representation that
works well for this task. Interestingly, other recent work combines the pre-training of a single classifier
with episodic fine-tuning by removing the classification head and continuing to train the embedding
network using the episodic inference algorithm that will be applied at test time (Triantafillou et al.,
2020; Chen et al., 2020). The success of this hybrid approach suggests that perhaps the two regimes
have complementary strengths, but the role of this episodic fine-tuning is poorly understood: what is
the nature of the modification it induces into the pre-trained solution? Under which conditions is it
required in order to achieve the best performance?

As a step towards answering those questions, we investigate the effect of the shot used during
episodic fine-tuning on the resulting model’s performance on test tasks of a range of shots. We are
particularly interested in understanding whether the shot of the training episodes constitutes a source
of information that the model can leverage to improve its few-shot classification performance on
episodes of that shot at test time. Our analysis reveals that indeed a particular functionality that
this fine-tuning phase may serve is to specialize a pre-trained model to solving tasks of a particular
shot; accomplished by performing the fine-tuning on episodes of that shot. However, perhaps
unsurprisingly, we find that specializing to a given shot comes at the expense of hurting performance
for other shots, in agreement with (Cao et al., 2020)’s theoretical finding in the context of Prototypical
Networks (Snell et al., 2017) where inferior performance was reported when the shot at training time
did not match the shot at test time.

Given those trade-offs, how can our newfound understanding of episodic fine-tuning as shot-
specialization help us in practice? It is unrealistic to assume that we will always have the same
number of labeled examples for every new class we hope to learn at test time, so we are interested in
approaches that operate well on tasks of a range of shots. However, it is impractical to fine-tune a
separate episodic model for every shot, and intuitively that seems wasteful as we expect that tasks
of similar shots should require similar models. Motivated by this, we propose to train a single
shot-conditional model for specializing the pre-trained solution to a wide spectrum of shots without
suffering trade-offs. This leads to a compact but flexible model that can be conditioned to be made
appropriate for the shot appearing in each test episode.

In what follows we provide some background on few-shot classification and episodic models and
then introduce our proposed shot-conditioning approach and related work. We then present our
experimental analysis on the effect of the shot chosen for episodic fine-tuning, and we observe that
our shot-conditional training approach is beneficial for obtaining a general flexible model that does
not suffer the trade-offs inherent in naively specializing to any particular shot. Finally, we experiment
with our proposed shot-conditional approach in the large-scale Meta-Dataset benchmark for few-shot
classification, and demonstrate its effectiveness in that challenging environment.

2 Background

Problem definition Few-shot classification aims to classify test examples of unseen classes from
a small labeled training set. The standard evaluation procedure involves sampling classification
episodes by picking N classes at random from a test set of classes Ctest and sampling two disjoint
sets of examples from the N chosen classes: a support set (or training set) of k labeled examples
per class, and a query set (or test set) of unlabeled examples, forming N -way, k-shot episodes. The
model is allowed to use the support set, in addition to knowledge acquired while training on a disjoint
set of classes Ctrain, to make a prediction for examples in the query set, and is evaluated on its query
set accuracy averaged over multiple test episodes.

Episodic training Early few-shot classification approaches (Vinyals et al., 2016) operate under
the assumption that obtaining a model capable of few-shot classification requires training it on
(mini-batches of) learning episodes, instead of (mini-batches of) individual examples as in standard
supervised learning. These learning episodes are sampled in the same way as described above for
test episodes, but with classes sampled from Ctrain this time. In other words, the model is trained to
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Figure 1: SCONE conditions the feature extractor fθ on an episode’s shot distribution.

minimize a loss of the form:

ES,Q∼PN,k
train

 1

|Q|
∑

(x∗,y∗)∈Q

− log pθ(y
∗ | x∗,S)

 (1)

where S and Q are support and query sets sampled from the distribution PN,ktrain of N -way, k-shot
training episodes induced by Ctrain, and θ represents the model’s parameters. This training regime
is often characterized as meta-learning or learning to learn, i.e. learning over many episodes how
to learn within an episode (from few labeled examples). Episodic models differ by their “inference
algorithm”, i.e. the manner in which pθ(y∗ | x∗,S) is computed to classify query examples based on
the support set.

Prototypical Networks Prototypical Networks (Snell et al., 2017) is a simple but effective episodic
model which constructs a prototype φc for each class c in an episode as

φc =
1

|Sc|
∑
x∈Sc

fθ(x), (2)

where f is an embedding function parametrized by θ and Sc represents the set of support examples
belonging to class c, and classifies a given query example as

p(y∗ = c | x∗,S) = exp(−||x∗ − φc||22)∑
c′ exp(−||x∗ − φc′ ||22)

. (3)

3 Shot CONditional Episodic (SCONE ) training

In this section we introduce Shot CONditional Episodic (SCONE ) training for the purpose of
specializing a strong pre-trained model to solving few-shot classification tasks of a range of different
shots, without suffering disproportionately for any shot.

Training objective Training episodically involves minimizing the objective shown in Equation 1.
We first sample an episode from P k,Ntrain and compute a prediction pθ(y∗ | x∗,S) for each query
example x∗. We then compute the cross-entropy loss on the query set using those predictions and
perform a parameter update by backpropagating its gradient with respect to θ into the inference
algorithm. In this work we concern ourselves with models that use an embedding function fθ to
obtain a representation for the support and query examples of each episode on top of which the
inference algorithm is applied. In Prototypical Networks, for instance, fθ contains all of the model’s
learnable parameters.
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SCONE trains on episodes of varying shots and conditions the model on each episode’s shot
distribution. (Figure 1) by minimizing

Ek∼Pk

ES,Q∼PN,k
train

 1

|Q|
∑

(x∗,y∗)∈Q

− log pθk(y
∗ | x∗,S)

 , (4)

where Pk is the distribution over shots at training time and θk depends on an episode’s sampled shots.
In the Appendix, we include an algorithm box outlining SCONE fine-tuning.

Conditioning mechanism Rather than learning a separate set of model parameters for each shot
setting, we modulate a subset of its parameters using FiLM (Perez et al., 2018), a simple conditioning
mechanism which performs an affine feature-wise transformation of its input x based on conditioning
information k (in our case, the episode’s number of shots):

FiLM(x) = γ(k)� x+ β(k). (5)

The dependency of γ and β on k is handled by maintaining distinct values for each shot setting and
selecting the appropriate γ and β based on an episode’s shot. Equivalently, we can think of our
approach as a compact representation of many shot-specific feature extractors which share all but
their FiLM layer parameters.

More concretely, we maintain a set of FiLM parameters for each shot in the [1, MAX-SHOT] range
(where MAX-SHOT is a hyperparameter) and let all shots settings greater than or equal to MAX-
SHOT share the same FiLM parametrization. As is often the case in practice, instead of inserting
FiLM layers in the network’s architecture, we modulate the scaling and shifting parameter values of
existing batch normalization layers (Dumoulin et al., 2017; De Vries et al., 2017). When performing
episodic fine-tuning, we initialize all sets of FiLM parameters to those learned during pre-training
(i.e. the learned batch normalization scaling and shifting coefficients). These different sets of FiLM
parameters are then free to deviate from each other as a result of fine-tuning. We found it beneficial to
penalize the L2-norm of β (regularizing the offset towards 0) and the L2 norm of γ − 1 (regularizing
the scaling towards 1). For this purpose, we introduce a hyperparameter that controls the strength of
this FiLM weight decay.

Handling class-imbalanced episodes SCONE can also be used on imbalanced episodes, where
different classes have different shots. In that case, instead of selecting a single set of FiLM parameters,
we compute the FiLM parameters for an episode as the convex combination of the FiLM parameters
associated with all shots found in the episode, where the weights of that combination are determined
based on the frequency with which each shot appears in the episode.

Concretely, the episode’s “shot distribution” s (a vector of length MAX-SHOT) is obtained by averaging
the one-hot representations of the shots of the classes appearing in an episode. In the special case of a
class-balanced episode, the resulting average will be exactly a one-hot vector. This shot distribution
is then used for the purpose of selecting the episode’s FiLM parameters. This can be thought of as an
embedding lookup sTF in a matrix F of FiLM parameters using a shot distribution s.

Smoothing the shot distribution We expect similar shots to require similar feature extractors,
which we incorporate as an inductive bias by smoothing the shots distribution using an exponential
moving average (with an exponential decay factor m) before normalizing it again. We treat m as a
hyperparameter that can be used both at training and evaluation time. We include the details of our
smoothing procedure in the Appendix.

4 Related Work

Few-shot classification A plethora of models have been recently proposed for few-shot classifi-
cation, and we refer the reader to (Hospedales et al., 2020) for a broad survey. Before episodic
training was introduced, few-shot classifiers often relied on metric learning (Koch et al., 2015;
Triantafillou et al., 2017). This theme persisted in early episodic models like Matching Networks
(Vinyals et al., 2016) and Prototypical Networks (Snell et al., 2017) where classification is made
via nearest-neighbour comparisons in the embedding space. Matching Networks apply a soft k-NN
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algorithm where the label of a query example is predicted to be the weighted average of the (one-hot)
support labels with the weights determined by the similarity of that query to each support example.

Gradient-based episodic models are another popular family of approaches following the influential
MAML paper (Finn et al., 2017). To create a classifier for each given episode, this approach fine-tunes
the embedding weights along with a linear classifier head using gradient descent on the support set.
Intuitively, this results in learning an embedding space that serves as a useful starting point from
which a few steps of gradient descent suffice to adapt the model to each episode’s classification task.
Proto-MAML (Triantafillou et al., 2020) is a simple extension that initializes the linear classifier for
each episode from the prototypes of the classes appearing in that episode.

Recently, the field has shifted towards studying few-shot classification in more realistic environments
like tiered-ImageNet (Ren et al., 2018) and Meta-Dataset (Triantafillou et al., 2020), which has
encouraged research into newly-introduced challenges, such as accounting for multiple diverse
datasets. Along these lines, Requeima et al. (2019); Bateni et al. (2019) proposed novel task
conditioning approaches, Saikia et al. (2020) introduced an improved hyperparameter tuning approach,
and Dvornik et al. (2020) proposed a method for selecting an appropriate set of features for each test
episode out of a universal feature representation.

Understanding episodic learning Our work inscribes itself in a recent line of work attempting
to understand the differences between episodic and non-episodic learning. Goldblum et al. (2020)
attempts to understand episodic learning from the perspective of how classes cluster in feature-space
(for models that learn a final classification layer on top of a feature extractor) as well as from the
perspective of local minima clusters (for gradient-based meta-learners). Huang et al. (2020); Chao
et al. (2020) draw parallels between learning episodes and supervised learning examples, Bronskill
et al. (2020) discusses batch normalization in episodic learning, drawing parallels from its use in
non-episodic learning and Chen et al. (2020) contrasts episodic and non-episodic learning in their
ability to generalize to new examples of previously seen classes or new examples of unseen classes.
Finally, Cao et al. (2020) theoretically investigates the role of the shot in Prototypical Networks to
explain the observed performance drop when there is a mismatch between the shots at training and
test time. Instead, we empirically study the effect of the shot chosen during episodic fine-tuning of a
pre-trained solution, in a larger-scale and more diverse environment.

Feature-wise conditioning Feature-wise transformations such as FiLM (Perez et al., 2018) are used
as a conditioning mechanism in a variety of problem settings; see Dumoulin et al. (2018) for a survey
on the topic. In the few-shot classification setting, FiLM is used as a way to condition metric learners’
backbones on the support set (Oreshkin et al., 2018; Requeima et al., 2019; Bateni et al., 2019),
as well as a way to represent many pre-trained classifiers using a shared parametrization (Dvornik
et al., 2020). Notably, TADAM (Oreshkin et al., 2018), CNAPs (Requeima et al., 2019) and Simple-
CNAPs (Bateni et al., 2019) also use task conditioning, but they use the mean of the support set for
this and thus the ‘shot’ information is discarded. The purpose of our conditioning mechanism is
instead to make the backbone shot-aware. The idea of shot-conditional learners is inspired by recent
work that investigates loss-conditional training using feature-wise transformations (Dosovitskiy and
Djolonga, 2020; Babaeizadeh and Ghiasi, 2020).

5 Experiments

5.1 Exploring the role of ‘shots‘ during episodic fine-tuning

In this subsection, we examine the effect of the ‘shot’ that is used during the episodic fine-tuning
phase, and in particular how it impacts the resulting model’s ability to solve test episodes of different
shots. We consider either using a fixed shot k throughout the fine-tuning phase, or fine-tuning on
episodes of a distribution of shots. In the latter case, we explore both standard fine-tuning as well as
SCONE fine-tuning that equips the model with the shot-conditioning mechanism described in the
previous section.

Experimental setup We ran this round of experiments on ImageNet using the class splits proposed
in Meta-Dataset. First, we pre-trained a standard classifier on the set of training classes of ImageNet.
We then removed the topmost classification layer, leaving us with a pre-trained backbone that we used
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Figure 2: Test accuracy on three different evaluation shots. Fine-tuning exclusively on a particular
shot leads to the best test accuracy on that shot but poor accuracy on different shots. Fine-tuning on
a range of shots is a reasonable general solution, but its performance can be improved when using
SCONE , thanks to its conditioning mechanism that offers a compact form of shot specialization.

as the initialization for the subsequent episodic fine-tuning round. We ran four variants of episodic
fine-tuning: exclusively on 1-shot episodes (‘Fine-tune on 1-shot’), exclusively on 5-shot episodes
(‘Fine-tune on 5-shot’), on episodes whose shot is drawn uniformly from the range [1, 40] (‘Fine-tune
on all shots’), and on episodes with that same shot distribution but using SCONE (‘SCONE Fine-
tune on all shots’), which additionally equips the backbone with the shot conditioning mechanism
described in the previous section. In all cases, we fix the ‘way’ to 5. We use Prototypical Networks as
the episodic model and we perform early stopping and model selection on the validation set of classes,
where the validation performance of a variant is computed on episodes of the same (distribution of)
shot(s) that it is trained on. All models are finally tested on a held-out test set of classes that is not
seen during pre-training nor episodic fine-tuning, on 5-way episodes of different shot settings.

As mentioned in the previous section, when applying SCONE training, we penalize the L2 norm of
FiLM parameters. For a fair comparison with the other models, we applied the same regularization to
the batch normalization parameters of all models during the episodic fine-tuning phase, and we found
this to be generally helpful. We tuned the strength of this regularization separately for each model
and picked the variant that worked best on the validation set, which we report in the Appendix. We
set the SCONE ’s MAX-SHOT hyperparameter to be 40 for this experiment.

Findings We observe from Figure 2 that fine-tuning on a fixed shot yields the best results on test
episodes of that shot. For example, 1-shot accuracies show that ‘Fine-tune on 1-shot’ surpasses the
performance of all other variants on 1-shot test episodes, with the analogous findings in 1-shot and
5-shot accuracies for 5-shot and 40-shot, respectively. Therefore, a particular functionality that the
episodic fine-tuning phase may serve is to specialize the pre-trained model for performing well on
tasks of a particular shot. However, as illustrated in all sub-plots of Figure 2, this shot specialization
comes at the cost of severely reduced performance on tasks of very different shots. For instance, the
model that is specialized for 40-shot tasks (‘Fine-tune on 40-shot’) performs very poorly on 1-shot
test tasks and vice-versa.

In practice, it may be desirable to perform well on more than a single shot setting at test time, without
having to fine-tune multiple separate shot-specialized models. A reasonable approach to that is
episodically fine-tuning on a range of shots, to obtain a general model. Indeed, Figure 2 shows that
‘Fine-tune on all shots’ does not perform too poorly on any shot but, perhaps unsurprisingly, in any
given setting, it falls short of the performance of the corresponding shot-specialized model.

Finally, we observe that SCONE fine-tuning outperforms its shot-unaware counterpart in all settings
(‘SCONE Fine-tune on all shots’ vs ‘Fine-tune on all shots’). This constitutes evidence that SCONE
fine-tuning indeed leads to a more flexible model that can adapt to the shot of each episode via its
conditioning mechanism, without suffering the trade-offs inherent in naively specializing a model
exclusively to any particular shot. We can view a SCONE model as a very compact way of
representing multiple shot-specialized models, where the information required for that specialization
resides in the light-weight FiLM parameters.

5.2 Large-scale Experiments on Meta-Dataset

In what follows, we apply SCONE to the diverse and challenging Meta-Dataset benchmark for
few-shot classification (Triantafillou et al., 2020). Meta-Dataset is comprised of ten distinct image
datasets, including natural images, handwritten characters and sketches. It also defines a generative
process for episodes that varies the way and shot across episodes, and within a particular episode
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Prototypical Networks (ImageNet only) Meta-Baseline (All datasets)

Dataset Standard L2 BN SCONE Classifier-Baseline Control SCONE

ILSVRC-2012 50.90± 1.12% 51.81± 1.06% 52.51± 1.11% 53.44± 0.82% 49.83± 0.80% 53.69± 0.83%
Omniglot 63.12± 1.37% 63.14± 1.32% 65.60± 1.34% 81.66± 0.73% 89.28± 0.51% 90.01± 0.49%
Aircraft 54.30± 0.97% 53.26± 0.97% 55.38± 0.96% 70.65± 0.62% 81.60± 0.49% 78.27± 0.54%
Birds 68.22± 0.97% 69.21± 1.01% 69.70± 1.01% 76.99± 0.64% 78.75± 0.59% 79.62± 0.58%
DTD 66.62± 0.90% 68.33± 0.81% 69.58± 0.77% 71.28± 0.56% 70.47± 0.58% 71.89± 0.59%
Quickdraw 59.79± 0.98% 59.17± 0.96% 60.81± 0.95% 64.09± 0.67% 72.79± 0.59% 71.95± 0.56%
Fungi 36.77± 1.07% 38.96± 1.10% 39.66± 1.12% 50.23± 0.81% 55.28± 0.73% 57.04± 0.74%
VGG Flower 86.61± 0.87% 87.70± 0.77% 88.03± 0.73% 89.14± 0.44% 90.13± 0.43% 91.09± 0.39%
Traffic Signs 48.64± 1.06% 46.54± 1.03% 48.24± 1.09% 68.87± 0.61% 70.37± 0.56% 70.33± 0.56%
MSCOCO 43.02± 1.09% 43.11± 1.05% 44.25± 1.11% 53.92± 0.78% 47.85± 0.81% 52.94± 0.82%

Average 57.80± % 58.12± % 59.38% 68.03% 70.63% 71.68%

Table 1: Left: Prototypical Networks fine-tuned on ImageNet (‘Standard’) with the addition of L2
regularization on the batch normalization weights (‘L2 BN’) and with SCONE (‘SCONE ’). Right:
Our reproduction of Classifier-Baseline trained on all datasets, and two variants that freeze those
weights and fine-tune using Meta-Baseline (Chen et al., 2020) to optimize either only the batch
norm parameters (‘Control’), or only SCONE ’s parameters (‘SCONE ’). In all cases, the reported
numbers are query set accuracies averaged over test episodes and 95% confidence intervals. In the
Appendix, we report details of the statistical test we ran to determine which numbers to bold.

varies the shot for different classes, introducing imbalance. The range of shots induced by this
episode generator is also larger than what we considered in the previous section. It is a long-tailed
distribution under which small and medium shots are more likely but it is possible to also encounter
very large shots (e.g. >400), though this would happen very infrequently. We include histograms of
the shot distributions of Meta-Dataset’s training, validation and test episodes in the Appendix. These
experiments aim to investigate whether SCONE is effective on this broader shot distribution, more
diverse data distribution, and imbalanced episodes.

Prototypical Network on ImageNet We compare standard episodic fine-tuning (‘Standard’) to
SCONE episodic fine-tuning (‘SCONE ’) on ImageNet episodes drawn from Meta-Dataset. Since
SCONE uses L2-regularization on the sets of FiLM parameters, for a fair comparison we include a
variant of standard episodic fine-tuning with L2-regularization on the batch normalization parameters
(‘L2 BN’).

Meta-Baseline on all datasets Next, we experiment with the recent Meta-Baseline model (Chen
et al., 2020). Meta-Baseline also consists of a pre-training phase (‘Classifier-Baseline’) followed
by an episodic fine-tuning phase (‘Meta-Baseline’). Classifier-Baseline refers to simply training a
classifier on the set of training classes. This variant is evaluated on few-shot episodes by discarding
the ultimate classification layer and utilizing a cosine similarity-based nearest-centroid inference
algorithm on the learned embeddings. Meta-Baseline then fine-tunes Classifier-Baseline’s pre-trained
embeddings on the episodic objective of the aforementioned nearest-centroid algorithm.

When training on all datasets of Meta-Dataset, they obtained strong results using their Classifier-
Baseline which is in this case trained in a multi-task setup with separate output heads for the different
datasets. They found that episodically fine-tuning that solution on all datasets did not help in general
(it improved performance on some datasets but hurt performance on a larger number of datasets).

Inspired by that finding, we experimented with a SCONE training phase on top of Classifier-
Baseline’s strong pre-trained solution where we froze the embedding weights to that powerful
representation and we optimized only the set of SCONE ’s FiLM parameters for shot conditioning.
We performed this fine-tuning on training episodes from all datasets, using Meta-Baseline’s nearest
centroid method as the episodic model. As a control experiment, we performed the same episodic fine-
tuning but without shot-conditioning, where we optimized only the batch normalization parameters,
keeping the remainder of the embedding weights frozen (’Control’).

Findings The results of this investigation are shown in Table 1. From the first three columns we
can see that SCONE fine-tuning using outperforms standard episodic fine-tuning in the context of
Prototypical Networks. Interestingly, penalizing the L2-norm of batch normalization parameters
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during episodic fine-tuning is beneficial even when not using SCONE , but it does not reach
the performance obtained by shot-conditioning. Similarly, in the context of Meta-Baseline (last
three columns), episodically fine-tuning the batch normalization parameters of the otherwise-frozen
embedding is helpful, but learning a separate set of FiLM parameters for each shot yields additional
gains in this setting too. Overall, despite the simplicity of SCONE , these results demonstrate its
effectiveness on different shot distributions, and in different backbones.

6 Conclusion

In summary, we present an analysis aiming to understand the role of episodic fine-tuning on top
of a pre-trained model for few-shot classification from the perspective of the effect of the shot
used during that fine-tuning. We discover that this fine-tuning phase can be used to specialize the
pre-trained model to episodes of a given shot, leading to strong performance on test episodes of that
shot at the expense of inferior performance on other shots. To eliminate that trade-off, we propose a
shot-conditional episodic training approach that trains a model on episodes of a range of shots and
can be conditioned at test time to modify its behavior appropriately depending on the shot of the given
test episode. Our experimental analysis suggests that our proposed shot-conditioning mechanism is
beneficial both in smaller-scale experiments, as well as in the large-scale and diverse Meta-Dataset
benchmark, in the context of two different episodic models.
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A Appendix

SCONE ’s training algorithm in more detail

For clarity, we provide pseudocode for SCONE ’s training algorithm including our procedure for
shot smoothing in Algorithm 1. We will also release our code upon publication for reproducibility.
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Algorithm 1 SCONE training
Require: Distributions of training episodes Ptrain, pre-trained embedding weights θ, pre-trained

batch norm weights γ and β, embedding function f , learning rate ε (a float), smoothing co-efficient
m (a float in the range [0, 1]) and maximum supported shot MAX-SHOT (an int).

Ensure: Finetuned embedding weights θ′ and FiLM parameters F = {γ′, β′}.

procedure SMOOTH-SHOT(s,m,MAX-SHOT)
if s > MAX-SHOT then

s← MAX-SHOT . Cap s to the max supported shot
end if
s← s− 1 . So that s is in the range [0,MAX-SHOT − 1]
s̃← ONE-HOT(s, DEPTH=MAX-SHOT) . Init the smoothed shot
for 0 ≤ j ≤ MAX-SHOT do

l← s− j − 1 . The index j slots to the left of s
l← ONE-HOT(l, DEPTH=MAX-SHOT) ∗m . Outputs the zero vector if l < 0
r ← s+ j + 1 . The index j slots to the right of s
r ← ONE-HOT(r, DEPTH=MAX-SHOT) ∗m . Outputs the zero vector if r < 0
s̃← s̃+ l + r
m← m2 . Adjust the next iteration’s smoothing

end for
end procedure

θ′ ← θ . Init the embedding weights from the pre-trained embeddings
for 1 ≤ k ≤ MAX-SHOT do . Init the FiLM params from the pre-trained batch norm params

γ′(k)← γ
β′(k)← β

end for
while validation accuracy is improving do

Sample a training episode with support set S and query set Q
Let k1, . . . kN be the shots of the episode’s classes.
s← ZEROS(MAX-SHOT) . Init the (unnormalized) shot distribution
for each class i do

si ← ONE-HOT(ki, DEPTH = MAX-SHOT)
si ← SMOOTH-SHOT(si,m,MAX-SHOT) . Smooth the one-hot shot of class i
s← s+ si

end for
s← s÷ SUM(s) . Normalize to get the episode’s shot distribution
γ′s ← sT γ′ . Select the FiLM params for the episode
β′s ← sTβ′

Let SH = {f(x; θ′, γ′s, β′s), y}(x,y)∈S . The embedded support set
Let QH = {f(x; θ′, γ′s, β′s), y}(x,y)∈Q . The embedded query set
L ← 1

|QH |
∑

(h∗,y∗)∈QH − log p(y∗ | h∗,SH) . Compute the episode’s loss

θ′ ← θ′ − ε ∂L
∂θ′

. Update the model via gradient descent

γ′ ← γ′ − ε ∂L
∂γ′

β′ ← β′ − ε ∂L
∂β′

end while
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Visualizing the FiLM parameters that SCONE learns

Finally, as a sanity check, we perform a UMAP projection (McInnes et al., 2018) of the learned
FiLM parameters for each shot setting (Figure 3). As expected, similar shot settings tend to learn
similar sets of FiLM parameters, which is reflective of the fact that they rely on similar features for
classification.
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Figure 3: UMAP projection of the learned FiLM parameters for each “shot” setting, color-coded by
shots.

Example smoothed shot distribution

To gain an intuition on the effect of our smoothing procedure, we illustrate in Figure 4 the result of
smoothing an example shot distribution using m = 1− 1e− 06, which is the value of the smoothing
hyperparameter that we used for our Prototypical Network experiments on Meta-Dataset. For this,
we consider a hypothetical 4-way episode where the shots for the four classes are: 1, 10, 23, and 103.
We observe that the largest peak is in the range of small values, due to the first three shots of the
episode, with the fourth shot causing a second peak around the value 103. As a reminder, this shot
distribution defines the weights of the convex combination of FiLM parameters that will be used for
the episode. In practice therefore, we are activating ‘blocks’ of FiLM parameters that are relevant for
each episode, instead of strictly activating only the FiLM parameters of the observed shots.

Experimental details

We plan to open source our code upon publication, including all experimental details. In the meantime,
we outline these details below for completeness.

Architecture We use ResNet-18 as the feature extractor for all of our experiments, following the
implementation in (Triantafillou et al., 2020). For the SCONE variants, we add FiLM to all of the
batch normalization layers throughout the network.

Image processing For all experiments, we use Meta-Dataset’s input pipeline to obtain images, and
we follow the image processing performed in (Chen et al., 2020) which yields images of size 128 x
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Figure 4: The shot distribution s produced according to our smoothing procedure for a hypothetical
4-way episode where the shots for the four classes are: 1, 10, 23, and 103.

128. We apply standard data augmentation consisting of horizontal flipping and random cropping
followed by standardization using a commonly-used mean and standard deviation as in (Chen et al.,
2020). For episodic models, data augmentation is applied in both the support and query sets. No data
augmentation is used at validation nor test time.

Optimization We use ADAM with exponential learning rate decay and weight decay of 1e− 8 to
optimize all models in this work. We tune the initial learning rate, the decay rate, and the number of
updates between each learning rate decay separately for each model presented in the paper. The initial
learning rate values we considered are 0.0005 and 0.001, with a decay factor of 0.8 or 0.9 applied
every 1000, 2000, 3000 steps. We ran a variant for every combination of those values. We also tune
the weight decay applied to the FiLM parameters (for SCONE variants) or the batch normalization
parameters (for non-SCONE variants). We tried the values: 1e− 8, 1e− 6, 1e− 4.

SCONE hyperparameters For the SCONE variants, aside from the above hyperparameters, we
additionally tune the smoothing parameter m described in the main paper that is used for training and
for evaluation. We did not tune the MAX-SHOT hyperparameter mentioned in the main paper as we
found that our initial choices worked reasonably. Specifically, we set it to 40 for the smaller-scale
experiments where the maximum shot was 40, and to 200 for the large-scale experiments. The
latter choice was performed heuristically since shots much larger than 200 are unlikely under the
shot distribution induced by Meta-Dataset’s episode generator. For more information on that shot
distribution, we refer the reader to the next section.

SCONE smoothing hyperparameter We tuned the value of this hyperparameter that will be
used both at training and at evaluation. At training time, we considered values in the range
0, 0.2, 0.4, 0.6, 0.9 for Prototypical Network experiments, and we picked the variant that worked best
according to the validation performance that was computed without smoothing. Once the model was
trained and all of the remaining hyperparamters were tuned, we performed a final validation round to
tune the evaluation-time smoothing that will be used in the chosen model. We found it beneficial to
use larger values here, picking the value of 1− 1e− 06 for example for the Prototypical Network on
ImageNet. In the Meta-Baseline codebase, we trained with larger values of smoothing (the best we
found was 1− 1e− 10) and didn’t find it beneficial to additionally smooth at evaluation time.

Model selection For each experiment, we perform early stopping according to the performance
on the validation set. For the models that train on a single shot k in the smaller-scale experiments,
the validation performance that we monitor for early stopping is the average query set accuracy on
k-shot 5-way episodes drawn from the validation set. For the models in the small-scale experiments
that train on a distribution of shots, we use the average validation performance over 5-way episodes
whose shot is sampled according to the same distribution used for training the respective model. For
the larger-scale Meta-Dataset experiments, we draw validation episodes only from the validation
set of ImageNet for the experiments that train on ImageNet only, or from the validation sets of all
datasets for the experiments that train on all datasets. In both cases, the validation episodes are
drawn using Meta-Dataset’s episode generator that yields episodes of variable ways and variable
shots with class imbalance. In all cases, the average validation performance is computed over 600
validation episodes and is monitored every 2K training updates. We apply exponential smoothing to
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the resulting validation "curve" (using the default value of 0.6 in TensorBoard). Then, we choose the
update step at which the highest peak of that curve is found and we use the checkpoint corresponding
to that update step for testing.

Hypothesis testing We follow the same procedure as in (Triantafillou et al., 2020) to determine
which entries to bold in our tables. Specifically, we perform a 95% confidence interval statistical test
on the difference between the mean accuracies of the two entries of that row. If we are not able to
reject the null hypothesis that the difference between their means is 0, we bold both entries. If we are
able to reject that hypothesis, we bold whichever entry has the largest mean accuracy.

Distribution of shots in Meta-Dataset episodes

For reference, Figure 5 displays histograms of the number of shots produced by Meta-Dataset’s
episode sampling algorithm. These are computed by sampling 600 episodes per dataset for each of
the training, validation and test splits of Meta-Dataset.
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Figure 5: Histogram of shots appearing in episodes generated using Meta-Dataset’s sampling algo-
rithm for the different splits.
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