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Abstract

Meta-learning aims to perform fast adaptation on a new task through learning a
“prior” from multiple existing tasks. A common practice in meta-learning is to
perform a train-validation split where the prior adapts to the task on one split of
the data, and the resulting predictor is evaluated on another split. Despite its preva-
lence, the importance of the train-validation split is not well understood either in
theory or in practice, particularly in comparison to the more direct non-splitting
method, which uses all the per-task data for both training and evaluation.
We provide a detailed theoretical study on whether and when the train-validation
split is helpful on the linear centroid meta-learning problem, in the asymptotic set-
ting where the number of tasks goes to infinity. We show that the splitting method
converges to the optimal prior as expected, whereas the non-splitting method does
not in general without structural assumptions on the data. In contrast, if the data
are generated from linear models (the realizable regime), we show that both the
splitting and non-splitting methods converge to the optimal prior. Further, per-
haps surprisingly, our main result shows that the non-splitting method achieves
a strictly better asymptotic excess risk under this data distribution, even when
the regularization parameter and split ratio are optimally tuned for both methods.
Our results highlight that data splitting may not always be preferable, especially
when the data is realizable by the model. We validate our theories by experimen-
tally showing that the non-splitting method can indeed outperform the splitting
method, on both simulations and real meta-learning tasks.

1 Introduction

Meta-learning, also known as “learning to learn”, has recently emerged as a powerful paradigm
for learning to adapt to unseen tasks [37]. The high-level methodology in meta-learning is akin to
how human beings learn new skills, which is typically done by relating to certain prior experience
that makes the learning process easier. More concretely, meta-learning does not train one model
for each individual task, but rather learns a “prior” model from multiple existing tasks so that it is
able to quickly adapt to unseen new tasks. Meta-learning has been successfully applied to many
real problems, including few-shot image classification [13, 38], hyper-parameter optimization [15],
low-resource machine translation [18] and short event sequence modeling [45].

A common practice in meta-learning algorithms is to perform a sample splitting, where the data
within each task is divided into a training split which the prior uses to adapt to a task-specific
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predictor, and a validation split on which we evaluate the performance of the task-specific predic-
tor [29, 31, 12, 43]. For example, in a 5-way k-shot image classification task, standard meta-learning
algorithms such as MAML [13] use 5k examples within each task as training data, and use additional
examples (e.g. k images, one for each class) as validation data. This sample splitting is believed to
be crucial as it matches the evaluation criterion at meta-test time, where we perform adaptation on
training data from a new task but evaluate its performance on unseen data from the same task.

Despite the aformentioned importance, performing the train-validation split has a potential drawback
from the data efficiency perspective — Because of the split, neither the training nor the evaluation
stage is able to use all the available per-task data. In the few-shot image classification example, each
task has a total of 6k examples available, but the train-validation split forces us to use these data
separately in the two stages. Meanwhile, performing the train-validation split is also not the only
option in practice: there exist algorithms such as Reptile [28] and Meta-MinibatchProx [46] that
can instead use all the per-task data for training the task-specific predictor and also perform well
empirically on benchmark tasks. These algorithms modify the loss function in the outer loop so that
the training loss no longer matches the meta-test loss, but may have the advantage in terms of data
efficiency for the overall problem of learning the best prior. So far it is theoretically unclear how
these two approaches (with/without train-validation split) compare with each other, which motivates
us to ask the following

Question: Is the train-validation split necessary and optimal in meta-learning?

In this paper, we perform a detailed theoretical study on the importance of the train-validation split.
We consider the linear centroid meta-learning problem [8], where for each task we learn a linear
predictor that is close to a common centroid in the inner loop, and find the best centroid in the outer
loop (see Section 2 for the detailed problem setup). This problem captures the essence of meta-
learning with non-linear models (such as neural networks) in practice, yet is sufficiently simple that
allows a precise theoretical characterization. We use a biased ridge solver as the inner loop with
a (tunable) regularization parameter, and compare two outer-loop algorithms of either performing
the train-validation split (the train-val method) or using all the per-task data for both training and
evaluation (the train-train method). Specifically, we compare the two methods when the number of
tasks T is large, and examine if and how fast they converge to the (properly defined) best centroid at
meta-test time. We summarize our contributions as follows:

• On the linear centroid meta-learning problem, we show that the train-validation split is necessary
in the general agnostic setting: As T → ∞, the train-val method converges to the optimal centroid
for test-time adaptation, whereas the train-train method does not without further assumptions on the
tasks (Section 3). The convergence of the train-val method is expected since its (population) training
loss is equivalent to the meta-test time loss, whereas the non-convergence of the train-train method
is because these two losses are not equivalent in general.

• Our main theoretical contribution is to show that the train-validation split is not necessary and
even non-optimal, in the perhaps more interesting regime when there are structural assumptions on
the tasks: When the data are generated from noiseless linear models, both the train-val and train-
train methods converge to the common best centroid, and the train-train method achieves a strictly
better (asymptotic) estimation error and test loss than the train-val method (Section 4). This is in
stark contrast with the agnostic case, and suggests that data efficiency may indeed be more important
when the tasks have a nice structure. Our results build on tools from random matrix theory in the
proportional regime, which may be of broader technical interest.

• We perform meta-learning experiments on simulations and benchmark few-shot image classi-
fication tasks, showing that the train-train method consistently outperforms the train-val method
(Section 5 & Appendix D). This validates our theories and presents empirical evidence that sample-
splitting may not be crucial; methods that utilize the per-task data more efficiently may be preferred.

1.1 Related work
Meta-learning and representation learning theory Baxter [5] provided the first theoretical anal-
ysis of meta-learning via covering numbers, and Maurer et al. [26] improved the analysis via Gaus-
sian complexity techniques. Another recent line of theoretical work analyzed gradient-based meta-
learning methods [7, 14, 20, 19] and showed guarantees for convex losses by using tools from online
convex optimization. Saunshi et al. [36] proved the success of Reptile in a one-dimensional subspace
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setting. Wang et al. [44] compared the performance of train-train and train-val methods for learning
the learning rate. Denevi et al. [8] proposed the linear centroid model studied in this paper, and
provided generalization error bounds for train-val method; the bounds proved also hold for train-
train method, so are not sharp enough to compare the two algorithms. Wang et al. [43] studied the
convergence of gradient-based meta-learning by relating to the kernelized approximation. On the
representation learning end, Du et al. [10], Tripuraneni et al. [40, 41] showed that ERM can success-
fully pool data across tasks to learn the representation. Yet the focus is on the accurate estimation
of the common representation, not on the fast adaptation of the learned prior. Lastly, we remark that
there are analyses for other representation learning schemes [27, 16, 1].

Empirical understandings of meta-learning Raghu et al. [30] investigated the representation
learning perspective of meta-learning and showed that MAML with a full finetuning inner loop
mostly learns the top-layer linear classifier and does not change the representation layers much.
This result partly justifies the validity our linear centroid meta-learning problem in which the features
(representations) are fixed and only a linear classifier is learned. Goldblum et al. [17] investigated the
difference of the neural representations learned by classical training (supervised learning) and meta-
learning, and showed that the meta-learned representation is both better for downstream adaptation
and makes classes more separated than the classically trained one. Although the classical training
method in [17] does not perform a train-validation split, it is not exactly the same as the train-
train method considered in this work as it effectively performs a supervised learning on all tasks
combined and does not do a per-task adaptation.

Multi-task learning Multi-task learning also exploits structures and similarities across multiple
tasks. The earliest idea dates back to Caruana [6], Thrun and Pratt [39], Baxter [5], initially in
connections to neural network models. They further motivated other approaches using kernel meth-
ods [11, 3] and multivariate linear regression models with structured sparsity [24, 25]. More recent
advances on deep multi-task learning focus on learning shared intermediate representations across
tasks [34]. These multi-task learning approaches usually minimize the joint empirical risk over all
tasks, and the models for different tasks are enforced to share a large amount of parameters. In
contrast, meta-learning only requires the models to share the same “prior”, which is more flexible
than multi-task learning.

2 Preliminaries
In this paper, we consider the standard meta-learning setting, in which we observe data from T ≥ 1
supervised learning tasks, and the goal is to find a prior (or “initialization”) using the combined data,
such that the (T + 1)-th new task may be solved sample-efficiently using the prior.

Linear centroid meta-learning We instantiate our study on the linear centroid meta-learning
problem (also known as learning to learn around a common mean, [8]), where we wish to learn a
task-specific linear predictor wt ∈ Rd in the inner loop for each task t, and learn a “centroid” w0 in
the outer loop that enables fast adaptation to wt within each task:

Find the best centroid w0 ∈ Rd for adapting to a linear predictor wt on each task t.

Formally, we assume that we observe training data from T ≥ 1 tasks, where for each task index t
we sample a task pt (a distribution over Rd × R) from some distribution of tasks Π, and observe n
examples (Xt,yt) ∈ Rn×d × Rn that are drawn i.i.d. from pt:

pt ∼ Π, (Xt,yt) = {(xt,i, yt,i)}ni=1 where (xt,i, yt,i)
iid∼ pt. (1)

We do not make further assumptions on (n, d); in particular, we allow the underdetermined setting
n ≤ d, in which there exists (one or many) interpolators w̃t that perfectly fit the data: Xtw̃t = yt.

Inner loop: Ridge solver with biased regularization towards the centroid Our goal in the inner
loop is to find a linear predictor wt that fits the data in task twhile being close to the given “centroid”
w0 ∈ Rd. We instantiate this through ridge regression (i.e. linear regression with L2 regularization)
where the regularization biases wt towards the centroid. Formally, for any w0 ∈ Rd and any dataset
(X,y), we consider the algorithm

Aλ(w0; X,y) := arg min
w

1

n
‖Xw − y‖2 + λ ‖w −w0‖2 = w0 +

(
X>X + nλId

)−1
X>(y −Xw0),
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where λ > 0 is the regularization strength (typically a tunable hyper-parameter). As we regularize
by ‖w −w0‖2, this inner solver encourages the solution to be close to w0, as we desire. Such a
regularizer is widely used in practical meta-learning algorithms such as MetaOptNet [22] and Meta-
MinibatchProx [46]. In addition, as λ → 0, this solver recovers gradient descent fine-tuning: we
have

A0(w0; X,y) := lim
λ→0
Aλ(w0; X,y) = w0 + X†(y −Xw0) = arg minXw=y ‖w −w0‖2

(where X† ∈ Rd×n denotes the pseudo-inverse of X). This is the minimum-distance interpolator of
(X,y) and also the solution found by gradient descent 5 on ‖Xw − y‖2 initialized at w0. Therefore
our ridge solver with λ > 0 can be seen as a generalized version of the gradient descent solver used
in MAML [13].

Outer loop: Finding the best centroid In the outer loop, our goal is to find the best centroid w0.
The standard approach in meta-learning is to perform a train-validation split, that is, (1) execute
the inner solver on a first split of the task-specific data, and (2) evaluate the loss on a second split,
yielding a function of w0 that we can optimize. This two-stage procedure can be written as

Compute wt(w0) = Aλ(w0; Xtrain
t ,ytrain

t ), and evaluate
∥∥yval

t −Xval
t wt(w0)

∥∥2
.

where (Xtrain
t ,ytrain

t ) = {(xt,i, yt,i)}n1

i=1 and (Xval
t ,y

val
t ) = {(xt,i, yt,i)}ni=n1+1 are two disjoint

splits of the per-task data (Xt,yt) of size (n1, n2), with n1 + n2 = n. Written concisely, this is to
consider the “split loss”

`tr-valt (w0) :=
1

2n2

∥∥yval
t −Xval

t Aλ(w0; Xtrain
t ,ytrain

t )
∥∥2
. (2)

In this paper, we will also consider an alternative version, where we do not perform the train-
validation split, but instead use all the per-task data for both training and evaluation. Mathemati-
cally, this is to look at the “non-split loss”

`tr-trt (w0) :=
1

2n
‖yt −XtAλ(w0; Xt,yt)‖2 . (3)

Our overall algorithm is to solve the empirical risk minimization (ERM) problem on the T observed
tasks, using either one of the two losses above:

L̂tr-val
T (w0) :=

1

T

T∑

t=1

`tr-valt (w0) and L̂tr-tr
T (w0) :=

1

T

T∑

t=1

`tr-trt (w0),

ŵ
{tr-val,tr-tr}
0,T := arg min

w0

L̂
{tr-val,tr-tr}
T (w0).

(4)

Let L{tr-val,tr-tr}(w0) := Ept∼Π,(Xt,yt)∼pt

[
`
{tr-val,tr-tr}
t (w0)

]
be the population risks.

(Meta-)Test time The meta-test time performance of any meta-learning algorithm is a joint func-
tion of the (learned) centroid w0 and the inner algorithm Alg. Upon receiving a new task pT+1 ∼ Π
and training data (XT+1,yT+1) ∈ Rn×d × Rn, we run the inner loop Alg with prior w0 on the
training data, and evaluate it on an (unseen) test example (x′, y′) ∼ pT+1:

Ltest(w0;Alg) := EpT+1∼ΠE
(XT+1,yT+1),(x′,y′)

iid∼pT+1

[
1

2

(
x′>Alg(w0; XT+1,yT+1)− y′

)2]
.

Additionally, for both train-val and train-train methods, we need to ensure that the inner loop used
for meta-test is exactly the same as that used in meta-training. Therefore, the meta-test performance
for the train-val and train-train methods above should be evaluated as

Ltest
λ,n1

(ŵtr-val
0,T ) := Ltest(ŵtr-val

0,T ;Aλ,n1
), Ltest

λ,n(ŵtr-tr
0,T ) := Ltest(ŵtr-tr

0,T ;Aλ,n),

5with a small step-size, or gradient flow.
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where Aλ,m denotes the ridge solver with regularization strength λ > 0 on m ≤ n data points.
Finally, we let

w0,?(λ;n) = arg min
w0

Ltest
λ,n(w0) (5)

denote the best centroid if the inner loop uses Aλ,n. The performance of the train-val algorithm
ŵtr-val

0,T should be compared against w0,?(λ, n1), whereas the train-train algorithm ŵtr-tr
0,T should be

compared against w0,?(λ, n).

2.1 Task-abundant setting through asymptotic analysis

In this paper we are interested in the task-abundant setting where we fix some finite (d, n) and let T
be very large. We analyze such a task-abundant setting through the asymptotic analysis framework,
that is, examine the limiting properties of the estimator (e.g. ŵ

{tr-val,tr-tr}
0,T ) as T → ∞. Here we

set up the basic notation of asymptotic analysis required in this paper. We emphasize that our large
T setting captures practical meta-learning scenarios; for example, 5-way image classification on
miniImageNet [32] contains

(
64
5

)
diverse tasks (at train time).

Asymptotic rate of estimation & excess risk Let L be any population risk with minimizer w0,?

(which we assume is unique), L̂T be the empirical risk on the observed data from T tasks, and
ŵ0,T be the minimizer of L̂T (i.e. the ERM). We say that ŵ0,T is consistent if ŵ0,T → w0,? in
probability as T → ∞. For consistent ERMs, we define its asymptotic parameter estimation error
(in MSE loss) and asymptotic excess risk as follows6:

AsymMSE(ŵ0,T ) := lim
T→∞

T · E
[
‖ŵ0,T −w0,?‖2

]

AsymExcessRisk(ŵ0,T ) := lim
T→∞

T · E[L(ŵ0,T )− L(w0,?)].

We emphasize that asymptotic statements are more refined than non-asymptotic O(·) style upper
bounds in the T → ∞ limit: they already imply the {MSE, excess risk} has order O(1/T ) and
specifies the leading constant.

3 The importance of sample splitting

We begin by analyzing whether the algorithms ŵ
{tr-val,tr-tr}
0,T defined in (4) converge to the best

test-time centroid w0,?(λ;n1) or w0,?(λ;n) (defined (5)) respectively as T → ∞, in the general
situation where we do not make structural assumptions on the data distribution pt.
Proposition 1 (Consistency and asymptotics of train-val method). Suppose Ex∼pt [xx>] � 0,
Ex∼pt [‖x‖4] < ∞ and E(x,y)∼pt [‖xy‖] < ∞ for almost surely all pt ∼ Π. Then for any λ > 0

and any (n1, n2) such that n1 + n2 = n, the train-val method ŵtr-val
0,T converges to the best test-time

centroid: ŵtr-val
0,T → w0,?(λ, n1) almost surely as T →∞. Further, we have

AsymMSE(ŵtr-val
0,T ) = tr

(
∇−2Ltest

λ,n1
(w0,?(λ, n1)) · Cov

(
∇`tr-valt (w0,?(λ, n1))

)
· ∇−2Ltest

λ,n1
(w0,?(λ, n1))

)
,

AsymExcessRiskLtest
λ,n1

(ŵtr-val
0,T ) = tr

(
∇−2Ltest

λ,n1
(w0,?(λ, n1)) · Cov

(
∇`tr-valt (w0,?(λ, n1))

))
.

Proposition 2 (Inconsistency of train-train method). There exists a distribution of tasks Π on d = 1
satisfying the conditions in Proposition 1 on which the train-train method does not converge to the
best test-time centroid: for any n ≥ 1 and any λ > 0, the estimation error ‖ŵtr-tr

0,T − w0,?(λ, n)‖
and the excess risk Ltest

λ,n(ŵtr-tr
0,T )−Ltest

λ,n(w0,?(λ, n)) are both bounded away from 0 almost surely as
T →∞.

Propositions 1 and 2 justify the importance of sample splitting: the train-val method converges to
the best test-time centroid, whereas the train-train method does not converge to the best centroid

6These definitions assume that the expectation exists for finite T ; the more general definition can be found
in Appendix A.1.
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in general. The reason behind Proposition 1 is simple: the population loss Ltr-val for the train-
val method is indeed equal to the test-time loss Ltest

λ,n1
, making the train-val method a proper ERM

for the meta-test time we care about, and thus the consistency and asymptotic normality follow from
classical results for the ERM (e.g. [42, 23]).

In contrast, for the train-train method, its expected loss Ltr-tr is in general not equivalent to Ltest
λ,n:

Ltr-tr measures the in-sample prediction error of the per-task predictor, whereas Ltest
λ,n measures the

out-of-sample prediction error. Consequently, the population minimizers of Ltest
λ,n and Ltr-tr are not

equal in general, which leads to ŵ0,? converging to the minimizer of Ltr-tr, not of Ltest
λ,n. The proof

of Proposition 2 constructs a simple counter-example in d = 1, but we expect such a mismatch to
generally hold in any dimension. Appendix A gives the proofs of Proposition 1 and 2.

4 Is sample splitting always optimal?

Proposition 2 states a negative result for the train-train method, showing that it does not converge
to the best test-time centroid without further assumptions on the data distribution. However, such
a negative result is inherently worst-case, and does not preclude the possibility that there exists a
data distribution on which the train-train method can also work well. In this section, we construct
a simple data distribution in which we can analyze the performance of both the train-val and the
train-train methods more explicitly, showing that sample splitting is indeed not optimal, and the
train-train method can work better.

Realizable linear model We consider the following instantiation of the (generic) data distribution
assumption in (1): We assume that each task pt is specified by a wt ∈ Rd sampled from some
distribution Π (overloading notation), and the observed data follows the noiseless linear model with
ground truth parameter wt:

yt = Xtwt, (6)

where the inputs xt,i
iid∼ N(0, Id) and are independent of wt. We assume that Π has a finite second

moment (i.e. Ewt∼Π[‖wt‖2] <∞). Note that when n ≥ d, we are able to perfectly recover wt for
all t (by solving linear equations), therefore the problem in the inner loop is in a sense “easy”; when
n < d, we cannot hope for such perfect recoveries. Our goal in the outer loop is to find the best w0,
measured by the test loss Ltest

λ,n for the train-train method and Ltest
λ,n1

for the train-val method.

4.1 Comparison of train-train and train-val on the realizable model

We begin by showing that on this task and data distribution, the population best centroids
w0,?(λ, n) = arg minw0

Ltest
λ,n(w0) is the same for any (λ, n), and both the train-val and train-

train methods are asymptotically consistent and converge to same best centroid.
Theorem 3 (Consistency of both train-val and train-train methods). On the realizable linear
model (6), the test-time meta loss for all λ > 0 and all n is minimized at the same point, that
is, the mean of the ground truth parameters:

w0,?(λ, n) = arg min
w0

Ltest
λ,n(w0) = w0,? := Ewt∼Π[wt], for all λ > 0, n.

Further, both the train-val method and the train-train method are asymptotically consistent: for any
λ > 0, n, and (n1, n2), we have

ŵtr-val
0,T (n1, n2;λ)→ w0,? and ŵtr-tr

0,T (n;λ)→ w0,? almost surely as T →∞.

See its proof in Appendix B.1. Theorem 3 shows that both train-val and train-train methods are
consistent, and they converge to the same optimal parameter w0,? which is the mean of wt. This is a
consequence of the good structure in our realizable linear model (6): at a high level, w0,? is indeed
the best centroid since it has (on average) the closest distance to a randomly sampled wt.

Theoerem 3 suggests that we are now able to compare performance of the two methods based on their
asymptotic parameter estimation error (for estimating w0,?). Throughout the rest of this section, let

R2 := E
[
‖wt −w0,?‖2

]
(7)

denote the variance of wt. We are now ready to state our main result.
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Theorem 4 (Comparison of asymptotic MSE of the train-val and train-train methods). In the
high-dimensional limiting regime d, n → ∞, d/n → γ ∈ (0,∞), the optimal rate of the train-
train method obtained by tuning the regularization λ ∈ (0,∞) satisfies

inf
λ>0

limd,n→∞,d/n=γ AsymMSE
(
ŵtr-tr

0,T (n;λ)
)

= inf
λ>0

ρλ,γR
2

(?)

≤ max

{
1 +

5

27
γ,

5

27
+ γ

}
·R2,

where ρλ,γ =4γ2
[
(γ − 1)2+(γ + 1)λ

]
/(λ+γ+1−

√
(λ+ γ + 1)2 − 4γ)2/

(
(λ+ γ + 1)2 − 4γ

)3/2
,

and the inequality becomes equality at γ = 1. In contrast, the optimal rate of the train-val method
by tuning the regularization λ ∈ (0,∞) and split ratio s ∈ (0, 1) is

infλ>0,s∈(0,1) limd,n→∞,d/n=γ AsymMSE
(
ŵtr-val

0,T (ns, n(1− s);λ)
)

= (1 + γ)R2.

As max{1 + 5γ/27, 5/27 + γ}< 1+γ (∀γ > 0), the train-train method achieves a strictly better
asymptotic rate than the train-val method when λ and s are optimally tuned in both methods.

Implications Comparison between the analytical upper bound max{1 + 5γ/27, 5/27 + γ}R2 for
train-train (1 + γ)R2 for train-val in Theorem 4 shows that the train-train method achieves a strictly
better asymptotic MSE than the train-val method, for any γ > 07. (See Figure 1(a) for a visualization
of the exact optimal rates and the upper bound (?).) Perhaps surprisingly, this suggests that the train-
train method is not only “correct” (converging to the best centroid), but can be even better than the
train-val method, when the data is structured. While the “correctness” of the train-train method is
a consequence of the realizable linear model, we believe its superior asymptotic MSE is due to the
fact that the train-train method is able to use the data more efficiently than the train-val method.

Also, while we reached such a conclusion on this particular problem of linear centroid meta-learning,
we suspect that this phenomenon to be not restricted to this problem, and may hold in more gener-
ality when data is structured or when the signal-to-noise ratio is high. As we are going to see, our
real data experiments in Appendix D indeed suggests that the superiority of the train-train method
may also hold on real meta-learning tasks with neural networks.

4.2 Proof highlights of Theorem 4

Here we sketch the technical highlights in proving Theorem 4. We defer the full proof to Ap-
pendix B.5.

Exact asymptotic MSE for both methods The proof begins by calculating the exact asymptotic
MSE for both methods, which we provide in the following theorem.
Lemma 5 (Exact asymptotic rates of the train-val and train-train methods). Suppose that ρtr-tr =

E
[∑d

i=1(σ
(n)
i )2/(σ

(n)
i +λ)4

]
(
E
[∑d

i=1 σ
(n)
i /(σ

(n)
i +λ)2

])2 and ρtr-val =
E
[(∑d

i=1 λ
2/(σ

(n1)
i +λ)2

)2
+(n2+1)

∑d
i=1 λ

4/(σ
(n1)
i +λ)4

]
(
E
[∑d

i=1 λ
2/(σ

(n1)
i +λ)2

])2 ,

where for any n, σ(n)
1 ≥ · · · ≥ σ

(n)
d denotes the eigenvalues of the matrix 1

nX>t Xt ∈ Rd×d,
where we recall Xt ∈ Rn×d is a random matrix with i.i.d. standard Gaussian entries. For any
(n, d), we have on the realizable linear model (6) that

AsymMSE
(
ŵtr-tr

0,T (n;λ)
)

= dR2ρtr-tr, AsymMSE
(
ŵtr-val

0,T (n1, n2;λ)
)

=
dR2ρtr-val

n2
.

See its proof in Appendix B.2. Lemma 5 follows straightforwardly from the classical asymptotic
result for empirical risk minimization [42] and simplifications of certain matrix traces in terms of
the spectrum of the empirical covariance matrix 1

n

∑n
t=1 XtX

>
t .

Simplifying and optimizing the asymptotic MSEs The asymptotic MSEs of the train-train and
train-val method in Lemma 5 are not yet directly comparable, as the quantities ρtr-tr and ρtr-val
depend on the spectrum of the empirical covariance matrix as well as additional tunable parameters
such as λ and (n1, n2) (for the train-val method). Towards proving Theorem 4, we further simplify
the rates and analyze the optimal tunable parameters, using separate strategies for the two methods:

7The same conclusion also holds for the asymptotic excess risk, as the Hessian of the excess risk is a rescaled
identity, see Appendix B.2.
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• For the train-val method, we show that the optimal tunable parameters for any (n, d) is taken at a
special case λ = ∞ and (n1, n2) = (0, n), at which the rates only depends on 1

n1
Xtrain>
t Xtrain

t

through its rank (and thus has a simple closed-form). We state this result in Corollary 8. The
proof builds on algebraic manipulations of the quantity ρtr-val, and can be found in Appendix B.3.

• For the train-train method, we apply random matrix theory to simplify the spectrum of 1
nX>t Xt in

the proportional limit where d, n→∞ and d/n stays a constant [4, 2], and obtain a closed-form
expression of the asymptotic MSE for any λ > 0, which we can analytically optimize over λ.
We state this result in Theorem 9. The proof builds on the Steiltjes transform and its “derivative
trick” [9], and is deferred to Appendix B.4.

5 Experiments
Simulations We experiment on the realizable linear model studied in Section 4. Recall that the
observed data of the t-th task are generated as

yt = Xtwt, with xt,i
iid∼ N(0, Id).

We independently generate wt
iid∼ N(w0,?, Id/

√
d), where w0,? is the linear centroid and the cor-

responding R2 = 1 here. The goal is to learn the linear centroid w0,? using the train-train method
and train-val method, i.e., minimizing L̂tr-tr

T and L̂tr-val
T , respectively. Note that both L̂tr-tr

T and L̂tr-val
T

are quadratic in w0, therefore, we can find the close-form solutions ŵ
{tr-tr,tr-val}
0,T . We measure the

performance of train-train and train-val methods using the `2-error ‖w0,? − ŵ
{tr-tr,tr-val}
0,T ‖2.

We present the comparison among train-train and train-val methods in Figure 1 with scatter plots
representing the simulation outputs under different settings. Across all the simulations, we well-tune
the regularization coefficient λ in the train-train method, and use a sufficiently large λ = 10000 in the
train-val method according to Corollary 8. The simulated results concentrate around the reference
curves corresponding to our theoretical findings. This corroborates our analyses and demonstrates
the better performance of train-train method on the realizable linear model.

Real data We additionally find that the train-train method consistently outperforms the train-val
method on few-shot image classification benchmarks (Table 1, more details in Appendix D).

Number of tasks d/n ratio with fixed n

tr-tr, 
ref. curve 3/T

tr-val, n1 = 0, 
ref. curve 4/T

tr-val, n1 = 5, 
ref. curve 5/T

tr-tr,
ref. curve 

tr-val, n1 = 0, 
ref. curve 1+d/n

tr-val, n1 = 5, 
ref. curve 1+ 4d/3n

d/n ratio

tr-val,  n1 = 0,
optimal

tr-tr, optimaltr-tr, 
upper bound

tr-val, n1 = 5, 
optimal

<latexit sha1_base64="+0TwvNo2j7UUNE1JmA0LHkNpDvg="></latexit>

(a) Optimal asymptotic MSE of bw{tr-tr, tr-val}
0,T

<latexit sha1_base64="7ulIt1oY7DYOdLxBBTci5pXC/p8=">AAACVnicbVFNT9wwEPWmpdDtB2k59mKxqUQlGiUrVe2BA1IvPYK0C1RkGznOhLVw4sieLKys/Db+Bv0B5Qj/ANVZ9lCWvouf3pvxjJ+zWgqDUfS75z17vvZifeNl/9XrN283/Xfvj4xqNIcxV1Lpk4wZkKKCMQqUcFJrYGUm4Tg7/975xzPQRqhqhPMaJiU7q0QhOEMnpf7PnewTDRKQMh0GFLRWmqrCKRcihylDm5QMp1lhL9o2tdEuHbW/bIJwibq0iUX9GfUudceMyaRt24DOQhPSYBSk/iAKowXoUxIvyYAscZD6N0mueFNChVwyY07jqMaJZRoFl9D2k8ZAzfg5O4NTRytWgpnYRQQt/eiUnBZu+0JVSBfqvx2WlcbMy8xVdg8yq14n/tfLTXfhynQsvk2sqOoGoeIPw4tGUlS0y5jmQgNHOXeEcS3c/pRPmWYc3U/0XTDxagxPydEwjL+E0eFwsL+3jGiDfCDbZIfE5CvZJz/IARkTTq7IH3JL7nrXvXtvzVt/KPV6y54t8gie/xejC7Tl</latexit>

(b) `2 error of bw{tr-tr, tr-val}
0,T v.s. T
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0,T v.s. d/n ratio
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Figure 1: Panel (a) presents the optimal AsymMSE(ŵtr-tr
0,T ) (blue) in Theorem 9 via grid search, and the

optimal AsymMSE(ŵtr-val
0,T ) in Corollary 8 with n1 = 0 (orange) and n1 = 5 (green), as well as the upper

bound of AsymMSE(ŵtr-tr
0,T ) (magenta) in Corollary 4. The optimal AsymMSE(ŵ

{tr-tr,tr-val}
0,T ) are used as

reference curves in plots (b) and (c). Panel (b) plots the `2-error of ŵ
{tr-tr,tr-val}
0,T as the total number of tasks

increases from 20 to 1000 with an increment of 20. We fix data dimension d = 60 and per-task sample size
n = 20. For the train-val method, we experiment on n1 = 0 and n1 = 5. Panel (c) shows the scaled (by T )
`2-error of ŵ

{tr-tr,tr-val}
0,T as the ratio d/n varies from 0 to 3 (n = 20 and T = 1000 are fixed).

6 Conclusion
We study the importance of train-validation split on the linear-centroid meta-learning problem, and
show that the necessity and optimality of train-validation split depends greatly on whether the tasks
are structured: the sample splitting is necessary in general situations, and not necessary and non-
optimal when the tasks are nicely structured. It would be of interest to study whether a similar
conclusion holds on other meta-learning problems such as learning a representation, or whether our
insights can be used towards designing meta-learning algorithms with better empirical performance.

8



References
[1] P. Alquier, T. T. Mai, and M. Pontil. Regret bounds for lifelong learning. arXiv preprint

arXiv:1610.08628, 2016.

[2] G. W. Anderson, A. Guionnet, and O. Zeitouni. An introduction to random matrices, volume
118. Cambridge university press, 2010.

[3] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Advances in neural
information processing systems, pages 41–48, 2007.

[4] Z. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices, vol-
ume 20. Springer, 2010.

[5] J. Baxter. A model of inductive bias learning. J. Artif. Int. Res., 2000.

[6] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997. ISSN 1573-0565.
doi: 10.1023/A:1007379606734. URL https://doi.org/10.1023/A:1007379606734.

[7] G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. Incremental learning-to-learn with statisti-
cal guarantees. arXiv preprint arXiv:1803.08089, 2018.

[8] G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. Learning to learn around a common mean.
In Advances in Neural Information Processing Systems, pages 10169–10179, 2018.

[9] E. Dobriban, S. Wager, et al. High-dimensional asymptotics of prediction: Ridge regression
and classification. The Annals of Statistics, 46(1):247–279, 2018.

[10] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei. Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434, 2020.

[11] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods.
Journal of machine learning research, 6(Apr):615–637, 2005.

[12] A. Fallah, A. Mokhtari, and A. Ozdaglar. On the convergence theory of gradient-based model-
agnostic meta-learning algorithms. In International Conference on Artificial Intelligence and
Statistics, pages 1082–1092, 2020.

[13] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1126–1135, 2017.

[14] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine. Online meta-learning. In Proceedings of
the 36th International Conference on Machine Learning, 2019.

[15] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming for hyper-
parameter optimization and meta-learning. arXiv preprint arXiv:1806.04910, 2018.

[16] T. Galanti, L. Wolf, and T. Hazan. A theoretical framework for deep transfer learning. Infor-
mation and Inference: A Journal of the IMA, 5(2):159–209, 2016.

[17] M. Goldblum, S. Reich, L. Fowl, R. Ni, V. Cherepanova, and T. Goldstein. Unraveling
meta-learning: Understanding feature representations for few-shot tasks. arXiv preprint
arXiv:2002.06753, 2020.

[18] J. Gu, Y. Wang, Y. Chen, K. Cho, and V. O. Li. Meta-learning for low-resource neural machine
translation. arXiv preprint arXiv:1808.08437, 2018.

[19] K. Ji, J. D. Lee, Y. Liang, and H. V. Poor. Convergence of meta-learning with task-specific
adaptation over partial parameters. arXiv preprint arXiv:2006.09486, 2020.

[20] M. Khodak, M.-F. Balcan, and A. Talwalkar. Adaptive gradient-based meta-learning methods.
arXiv preprint arXiv:1906.02717, 2019.

[21] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional
neural networks. pages 1097–1105, 2012.

9

https://doi.org/10.1023/A:1007379606734


[22] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex
optimization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 10657–10665, 2019.

[23] P. Liang. Cs229t/stat231: Statistical learning theory (winter 2016), 2016.

[24] H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate descent procedures for the multi-task
lasso, with applications to neural semantic basis discovery. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 649–656, 2009.

[25] H. Liu, L. Wang, and T. Zhao. Calibrated multivariate regression with application to neural
semantic basis discovery. Journal of machine learning research: JMLR, 16:1579, 2015.

[26] A. Maurer, M. Pontil, and B. Romera-Paredes. The benefit of multitask representation learning.
The Journal of Machine Learning Research, 17(1):2853–2884, 2016.

[27] D. McNamara and M.-F. Balcan. Risk bounds for transferring representations with and without
fine-tuning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 2373–2381. JMLR. org, 2017.

[28] A. Nichol and J. Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2, 2018.

[29] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[30] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid learning or feature reuse? towards
understanding the effectiveness of maml. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=rkgMkCEtPB.

[31] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients.
In Advances in Neural Information Processing Systems, pages 113–124, 2019.

[32] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. 2017.

[33] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. Tenenbaum, H. Larochelle,
and R. Zemel. Meta-learning for semi-supervised few-shot classification. arXiv preprint
arXiv:1803.00676, 2018.

[34] S. Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, and M. Bernstein. Imagenet large scale visual recognition challenge. 115(3):
211–252, 2015.

[36] N. Saunshi, Y. Zhang, M. Khodak, and S. Arora. A sample complexity separation between
non-convex and convex meta-learning. arXiv preprint arXiv:2002.11172, 2020.

[37] J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[38] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. pages 4077–
4087, 2017.

[39] S. Thrun and L. Pratt. Learning to Learn: Introduction and Overview, pages 3–17. Springer
US, Boston, MA, 1998. ISBN 978-1-4615-5529-2. doi: 10.1007/978-1-4615-5529-2 1. URL
https://doi.org/10.1007/978-1-4615-5529-2_1.

[40] N. Tripuraneni, C. Jin, and M. I. Jordan. Provable meta-learning of linear representations.
arXiv preprint arXiv:2002.11684, 2020.

[41] N. Tripuraneni, M. I. Jordan, and C. Jin. On the theory of transfer learning: The importance of
task diversity. arXiv preprint arXiv:2006.11650, 2020.

10

https://openreview.net/forum?id=rkgMkCEtPB
https://doi.org/10.1007/978-1-4615-5529-2_1


[42] A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

[43] H. Wang, R. Sun, and B. Li. Global convergence and induced kernels of gradient-based meta-
learning with neural nets. arXiv preprint arXiv:2006.14606, 2020.

[44] X. Wang, S. Yuan, C. Wu, and R. Ge. Guarantees for tuning the step size using a learning-to-
learn approach. arXiv preprint arXiv:2006.16495, 2020.

[45] Y. Xie, H. Jiang, F. Liu, T. Zhao, and H. Zha. Meta learning with relational information for
short sequences. In Advances in Neural Information Processing Systems, pages 9904–9915,
2019.

[46] P. Zhou, X. Yuan, H. Xu, S. Yan, and J. Feng. Efficient meta learning via minibatch proximal
update. In Advances in Neural Information Processing Systems, pages 1534–1544, 2019.

A Proofs for Section 3

A.1 Detailed introduction on asymptotic analysis

Here we provide more details on the asymptotic analysis framework sketched in Section 2.1.

In typical scenarios, for consistent ERMs, the limiting distribution of ŵ0,T is asymptotically normal
with a known covariance matrix, as is characterized in the following classical result (see, e.g. Van der
Vaart [42, Theorem 5.21] and also Liang [23]).
Proposition 6 (Asymptotic normality and excess risk of ERMs). Assume the population minimizer
w0,? is unique and the ERM ŵ0,T is consistent (i.e. it converges to w0,? in probability as T →∞).
Further assume the following regularity conditions:

(a) There exists some random variable At = A(pt,Xt,yt) such that E[A2
t ] <∞ and

‖∇`t(w1)−∇`t(w2)‖ ≤ At ‖w1 −w2‖
for all w1,w2 ∈ Rd;

(b) E[‖∇`t(w0,?)‖2] <∞;

(c) L is twice-differentiable with∇2L(w0,?) � 0,

then the ERM ŵ0,T is asymptotically normally distributed, with
√
T · (ŵ0,T −w0,?)

d→ N
(
0,∇2L(w0,?)

−1Cov(∇`t(w0,?))∇2L(w0,?)
−1
)

=: Pw,

T · (L(ŵ0,T )− L(w0,?))
d→∆>∇2L(w0,?)∆ where ∆ ∼ Pw.

where d→ denotes convergence in distribution and `t : Rd → R is the loss function on a single task.

When this happens, we define the asymptotic rate of estimation (in MSE loss) and asymptotic excess
risk ŵ0,T as those of its limiting distribution:

AsymMSE(ŵ0,T ) := E∆∼Pw

[
‖∆‖2

]
= tr

(
∇2L(w0,?)

−1Cov(∇`t(w0,?))∇2L(w0,?)
−1
)

AsymExcessRisk(ŵ0,T ) := E∆∼Pw

[
∆>∇2L(w0,?)∆

]
= tr

(
∇2L(w0,?)

−1Cov(∇`t(w0,?))
)
.

A.2 Proof of Proposition 1

Equivalence of test-time risk and training loss for train-val method We first show that

Ltr-val(w0) = E[`tr-valt (w0)] = Ltest
λ,n1

(w0)

for all w0, that is, the population meta-test loss is exactly the same as the population risk of the train-
val method. This is straightforward: as the tasks are i.i.d. and Aλ(w0; Xtrain

t ,ytrain
t ) is independent

of the test points (Xval
t ,y

val
t ), we have for any w0 that

E[`tr-valt (w0)] = Ept∼Π,(Xt,yt)∼pt

[
1

2n2

∥∥yval
t −Xval

t Aλ(w0; Xtrain
t ,ytrain

t )
∥∥2
]
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= Ept∼Π,(Xt,yt)∼pt

[
1

2

(
yvalt,1 − xval>

t,1 Aλ(w0; Xtrain
t ,ytrain

t )
)2]

= E
pT+1∼Π,(XT+1,yT+1),(x′,y′)

iid∼pt

[
1

2

(
y′ − x′>Aλ,n1(w0; XT+1,yT+1)

)2]

= Ltest
λ,n1

(w0).

Therefore the train-val method is acutally a valid ERM for the test loss Ltest
λ,n1

, and it remains to show
that the train-val method is (itself) consistent.

Consistency We expand the empirical risk of the train-val method as

L̂tr-val
T (w0) =

1

T

T∑

t=1

1

2n2

∥∥yval
t −Xval

t Aλ(w0; Xtrain
t ,ytrain

t )
∥∥2

=
1

T

T∑

t=1

1

2n2

∥∥yval
t −Xval

t

[
w0 + (Xtrain>

t Xtrain
t + n1λId)

−1Xtrain>
t (ytrain

t −Xtrain
t w0)

]∥∥2

=
1

T

T∑

t=1

1

2n2

∥∥yval
t −Xval

t (Xtrain>
t Xtrain

t + n1λId)
−1Xtrain>

t ytrain
t −Xval

t n1λ(Xtrain>
t Xtrain

t + n1λId)
−1w0

∥∥2

=
1

2
w>0 MTw0 −w>0 bT + const,

where

MT :=
1

T

T∑

t=1

λ2(Xtrain>
t Xtrain

t /n1 + λId)
−1 Xval>

t Xval
t

n2
(Xtrain>

t Xtrain
t /n1 + λId)

−1,

bT :=
1

T

T∑

t=1

λ(Xtrain>
t Xtrain

t /n1 + λId)
−1 · 1

n2
Xval>
t

(
yval
t −Xval

t (Xtrain>
t Xtrain

t + n1λId)
−1Xtrain>

t ytrain
t

)
.

Noticing that (Xtrain>

t Xtrain
t /n1 + λId)

−1 � λ−1Id and by the assumption that E(x,y)∼pt [xx>] ≺
∞, E(x,y)∼pt [xy] < ∞, we have E[‖MT ‖] < ∞ and E[‖bT ‖] < ∞. Since the task pt’s are i.i.d.,
by the law of large numbers, we have with probability one that

MT → E[MT ]

= Ept,(Xt,yt)

[
λ2(Xtrain>

t Xtrain
t /n1 + λId)

−1 Xval>
t Xval

t

n2
(Xtrain>

t Xtrain
t /n1 + λId)

−1

]

= Ept,(Xt,yt)

[
λ2(Xtrain>

t Xtrain
t /n1 + λId)

−1Σt(X
train>
t Xtrain

t /n1 + λId)
−1
]
� 0,

(8)

(where Σt = Ex∼pt [xx>] � 0) and

bT → E[bT ]

= Ept,(Xt,yt)

[
λ(Xtrain>

t Xtrain
t /n1 + λId)

−1 · 1

n2
Xval>
t

(
yval
t −Xval

t (Xtrain>
t Xtrain

t + n1λId)
−1Xtrain>

t ytrain
t

)]

<∞
(9)

as T →∞. Therefore, by Slutsky’s Theorem, we have

ŵ0,T = M−1
T bT → E[MT ]−1E[bT ] = arg min

w0

Ltr-val(w0) = arg min
w0

Ltest
λ,n1

(w0) = w0,?(λ, n1)

as T →∞. This proves the consistency of the train-val method.

Asymptotic normality Similar as above, we can write the per-task loss as

`t(w0) =
1

2
‖Atw0 − ct‖2 ,
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where

At =
λ√
n2

Xval
t (Xtrain>

t Xtrain
t /n1 + λId)

−1,

ct =
1√
n2

(
yval
t −Xval

t (Xtrain>
t Xtrain

t /n1 + λId)
−1 1

n1
Xtrain>
t ytrain

t

)
.

In order to show the desired asymptotic normality result, it suffices to check the conditions in Propo-
sition 6. First, we have

∇`t(w0) = A>t (Atw0 − ct).

This is Lipschitz in w0 with Lipschitz constant
∥∥A>t At

∥∥
op
≤ ‖At‖2Fr <

1

n2

∥∥Xval
t

∥∥2

Fr
.

As Ex∼pt [‖x‖4] < ∞, the above quantity is clearly square integrable, therefore verifying (a). As
w0,? = w0,?(λ, n1) is finite, we can use similar arguments as above to show (b) holds. Finally, we
have already seen L is twice-differentiable (since it is quadratic in w0) and ∇2L(w0,?) � 0, which
verifies (c). Therefore the conditions of Proposition 6 hold, which yields the desired asymptotic
normality result.

A.3 Proof of Proposition 2

High-level idea At a high level, this proof proceeds by showing that the train-train method is also
consistent to the (population) minimizer of Ltr-tr, and constructing a simple counter-example on
which the minimizers of Ltr-tr is not equal to that of Ltest

λ,n.

Population minimizers of Ltr-tr and Ltr-val We begin by simplifying the non-splitting risk. We
have

`tr-trt (w0) =
1

2n
‖yt −XtAλ(w0; Xt,yt)‖2

=
1

2n

∥∥yt −Xt

[
w0 + (X>t Xt + nλId)

−1X>t (yt −Xtw0)
]∥∥2

=
1

2
‖Atw0 − ct‖2 ,

where

At =
1√
n
nλXt(X

>
t Xt + nλId)

−1 and ct =
1√
n

(
In −Xt(X

>
t Xt + nλId)

−1X>t
)
yt.

Using similar arguments as in the proof of Proposition 1 (Appendix A.2), we see that the train-
train method ŵtr-tr

0,T converges with probability one to the minimizer of the pouplation risk Ltr-tr,
which is

wtr-tr
0,? = arg min

w0

Ltr-tr(w0) =
(
E[A>t At]

)−1E[A>t ct]

= E
[
λ2(X>t Xt/n+ λId)

−2 X>t Xt

n

]−1

· E
[

1

n
λ(X>t Xt/n+ λId)

−1X>t (In −Xt(X
>
t Xt + nλId)

−1X>t )yt

]

= E
[
λ2(X>t Xt/n+ λId)

−2 X>t Xt

n

]−1

· E
[
λ2(X>t Xt/n+ λId)

−2 1

n
X>t yt

]
.

(10)
On the other hand, recall from Proposition 1 ((8) and (9)) that the population minimizer of Ltest

λ,n is

w0,?(λ, n) = arg min
w0

Ltest
λ,n(w0)

= E
[
λ2(X>t Xt/n+ λId)

−1Σt(X
>
t Xt/n+ λId)

−1
]−1 ·

{
λE
[
(X>t Xt/n+ λId)

−1
]
Ept,(x′,y′)∼pt [x

′y′]

− λE
[
(X>t Xt/n+ λId)

−1Σt(X
>
t Xt/n+ λId)

−1 1

n
X>t yt

]}
.

(11)
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Construction of the counter-example We now construct a distribution for which (10) is not equal
to (11). Let d = 1 and let all pt be the following distribution:

pt : (xt,i, yt,i) =

{
(1, 3) with probability 1/2;

(3,−1) with probability 1/2.

Clearly, we have Σt = 5, st := X>t Xt/n ∈ [1, 9], and Ex′,y′∼pt [x
′y′] = 0. Therefore we have

wtr-tr
0,? = E

[
(st + λ)−2st

]−1 · E
[

(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]
,

and

w0,?(λ, n) = −E
[
5λ2(st + λ)−2

]−1 · E
[

5λ(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]

= −E
[
λ(st + λ)−2

]−1 · E
[

(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]
.

We now show that wtr-tr
0,? 6= w0,?(λ, n) by showing that

E

[
(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]
= E

[
xt,1yt,1

(st + λ)2

]
6= 0

for any λ > 0. Indeed, conditioning on (xt,1, yt,1) = (1, 3), we know that the sum-of-squares in st
has one term that equals 1, and all others i.i.d. being 1 or 9 with probability one half. On the other
hand, if we condition on (xt,1, yt,1) = (3,−1), then we know the sum in st has one term that equals
9 and all others i.i.d.. This means that the negative contribution in the expectation is smaller than
the positive contribution, in other words

E
[
xt,1yt,1

(st + λ)2

]
=

1

2
· 3E

[
1

(st + λ)2

∣∣∣∣(xt,1, yt,1) = (1, 3)

]

+
1

2
· −3E

[
1

(st + λ)2

∣∣∣∣(xt,1, yt,1) = (3,−1)

]
> 0.

This shows wtr-tr
0,? 6= w0,?(λ, n) and consequently the ŵtr-tr

0,T does not converge to w0,?(λ, n) and the
difference is bounded away from zero as T →∞.

Finally, for this distribution, the risk Ltest
λ,n(w0) is strongly convex (since it has a positive second

derivative), this further implies that Ltest
λ,n(ŵtr-tr

0,T ) − Ltest
λ,n(w0,?(λ, n)) is bounded away from zero

almost surely as T →∞.

B Proofs for Section 4

B.1 Proof of Theorem 3

We first show that w0,? = Ewt∼Π[wt] is a global optimizer for Ltr-tr and Ltr-val with any regulariza-
tion coefficient λ > 0, any n, and any split (n1, n2). To do this, it suffices to check that the gradient
at w0,? is zero and the Hessian is positive definite (PD).

Optimality of w0,? in both Ltr-tr and Ltr-val. We first look at Ltr-tr: for any w0 ∈ Rd we have

Ltr-tr(w0) = E[`tr-trt (w0)]

=
1

2n
E
[∥∥∥Xtwt −Xt

[(
X>t Xt + nλId

)−1
X>t (Xtwt −Xtw0) + w0

]∥∥∥
2
]

=
1

2n
E
[∥∥∥Xt

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)
(wt −w0)

∥∥∥
2]
. (12)

Similarly, Ltr-val can be written as

Ltr-val(w0) (13)
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= E[`tr-valt (w0)]

=
1

2n2
E
[∥∥∥Xval

t wt −Xval
t

[(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>
(
Xtrain
t wt −Xtrain

t w0

)
+ w0

]∥∥∥
2
]

=
1

2n2
E
[∥∥∥Xval

t

(
Id −

(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>Xtrain
t

)
(wt −w0)

∥∥∥
2]
. (14)

We denote

Mtr-tr
t = Xt

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)
and (15)

Mtr-val
t = Xval

t

(
Id −

(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>Xtrain
t

)
(16)

to simplify the notations in (12) and (14). We take gradient of Ltr-tr and Ltr-val with respect to w0:

∇w0L
tr-tr(w0) = − 1

n
E
[
(Mtr-tr

t )>Mtr-tr
t (wt −w0)

]
, (17)

∇w0
Ltr-val(w0) = − 1

n2
E
[
(Mtr-val

t )>Mtr-val
t (wt −w0)

]
. (18)

Substituting w0,? into (17) and taking expectation, we deduce

∇w0
Ltr-tr(w0,?) = − 1

n
E
[
(Mtr-tr

t )>Mtr-tr
t (wt −w0,?)

]
= 0. (19)

To see this, observe that by definition E[wt − w0,?] = 0. Combining with wt being generated
independently of Xt, we have the first term in RHS of (19) vanish. In addition, zt is independent
white noise, therefore, the second term in RHS of (19) also vanishes. Following the same argument,
we can show

∇w0L
tr-val(w0,?) = 0,

since X′t is also independent of wt. The above reasonings indicates that w0,? is a stationary point
of both Ltr-tr and Ltr-val. The remaining step is to check ∇w0

Ltr-tr(w0,?) and ∇w0
Ltr-val(w0,?) are

PD. From (17) and (18), we derive respectively the hessian of Ltr-tr and Ltr-val as

∇2
w0
Ltr-tr(w0,?) =

1

n
E[(Mtr-tr

t )>Mtr-tr
t ] and

∇2
w0
Ltr-val(w0,?) =

1

n2
E[(Mtr-val

t )>Mtr-val
t ].

Let v ∈ Rd be any nonzero vector, we check v>∇2
w0
Ltr-tr(w0,?)v > 0. A key obser-

vation is that
(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)
is positive definite for any λ 6= 0. To see

this, let σ1 ≥ · · · ≥ σd be eigenvalues of 1
nX>t Xt, some algebra yields the eigenvalues of(

Id −
(
X>t Xt + nλId

)−1
X>t Xt

)
are λ

λ+σi
> 0 for λ 6= 0 and i = 1, . . . , d. Hence, we deduce

v>∇2
w0
Ltr-tr(w0,?)v =

1

n
E[v>X>t

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)2

Xtv] > 0, (20)

since Xt is isotropic (an explicit computation of the hessian matrix can be found in Appendix B.2).
As a consequence, we have shown that w0,? is a global optimum of Ltr-tr. The same argument
applies to Ltr-val, and the proof is complete.

Consistency of ŵ
{tr-tr,tr-val}
0,T . To check the consistency, we need to verify the conditions (a) – (c) in

Proposition 6.

For condition (a), we derive from (17) and (18) that
∥∥∥∇`{tr-tr,tr-val}t (w1)−∇`{tr-tr,tr-val}t (w2)

∥∥∥ ≤ 1

n

∥∥∥(M
{tr-tr,tr-val}
t )>M

{tr-tr,tr-val}
t

∥∥∥
op
‖w1 −w2‖,

where n should be replaced by n2 for the split method (we slightly abuse the notation for simplicity).

It suffices to show E
[∥∥∥(M

{tr-tr,tr-val}
t )>M

{tr-tr,tr-val}
t

∥∥∥
op

]
<∞, which follows from the same argu-

ment in the proof of Proposition 1. In particular, we know 0 � Id−
(
X>t Xt + nλId

)−1
X>t Xt � Id
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and E[
∥∥X>t Xt

∥∥
op

] < ∞ since Xt is Gaussian. As a consequence, for the no-split method,

we have E
[∥∥(Mtr-tr

t )>Mtr-tr
t

∥∥2

op

]
< ∞. For the split method, we also have 0 � Id −

(
(Xtrain

t )>Xtrain
t + nλId

)−1
(Xtrain

t )>Xtrain
t � Id and E[

∥∥(Xval
t )>Xval

t

∥∥
op

] < ∞, which implies

E
[∥∥(Mtr-val

t )>Mtr-val
t

∥∥2

op

]
<∞.

For condition (b), using a similar argument in condition (a) and combining with R2 = E[‖w0,? −
wt‖2], we have E[‖∇`{tr-tr,tr-val}t (w0,?)‖2] <∞.

For condition (c), using (20), we directly verify that L{tr-tr,tr-val} is twice-differentiable and
∇2L{tr-tr,tr-val} � 0.

B.2 Proof of Lemma 5

Proof. In this section we prove Lemma 5. Using the the asymptotic normality in Proposition 6,
the asymptotic covariance is∇−2L{tr-tr,tr-val}Cov[∇`{tr-tr,tr-val}t ]∇−2L{tr-tr,tr-val}. Therefore, in the
following, we only need to find∇−2L{tr-tr,tr-val} and Cov[∇`{tr-tr,tr-val}t ].

• Asymptotic variance of ŵtr-tr
0,T . We begin with the computation of the expected Hessian

1
nE[(Mtr-tr

t )>Mtr-tr
t ].

E[(Mtr-tr
t )>Mtr-tr

t ]

= E
[(

Id −
(
X>t Xt + nλId

)−1
X>t Xt

)>
X>t Xt

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)]

(i)
= E

[
Vt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)>
D>t Dt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)
V>t
]
,

(21)

where the equality (i) is obtained by plugging in the SVD of Xt = UtDtV
>
t with Ut ∈ Rn×n,

Dt ∈ Rn×d, and Vt ∈ Rd×d. A key observation is that Ut and Vt are independent, since Xt is
isotropic, i.e., homogeneous in each orthogonal direction. To see this, for any orthogonal matrices
Q ∈ Rn×n and P ∈ Rd×d, we know Xt and QXtP

> share the same distribution. Moreover, we
have QXtP

> = (QUt)Dt(PVt)
> as the SVD. This shows that the left and right singular matrices

are independent and both uniformly distributed on all the orthogonal matrices of the corresponding
dimensions (Rn×n and Rd×d, respectively).

Recall that we denote σ(n)
1 ≥ · · · ≥ σ

(n)
d as the eigenvalues of 1

nX>t Xt. Thus, we have D>t Dt =

Diag(nσ
(n)
1 , . . . , nσ

(n)
d ). We can further simplify (21) as

E
[
Vt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)>
D>t Dt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)
V>t
]

= E

[
VtDiag

(
nλ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
nλ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t

]

= E

[
d∑

i=1

nλ2σ
(n)
i

(σ
(n)
i + λ)2

vt,iv
>
t,i

]
. (22)

We will utilize the isotropicity of Xt to find (22). Recall that we have shown that Vt is uniform
on all the orthogonal matrices. Let P ∈ Rd×d be any permutation matrix, then VtP has the same
distribution as Vt. For this permuted data matrix VtP, (22) becomes

E

[
d∑

i=1

nλ2σ
(n)
i

(σ
(n)
i + λ)2

vt,τp(i)v
>
t,τp(i)

]
with τp(i) denotes the permutation of the i-th element in P.

Summing over all the permutations P (and there are totally d! instances), we deduce

d!E[(Mtr-tr
t )>Mtr-tr

t ]
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=
∑

all permutation τp

E

[
d∑

i=1

nλ2σ
(n)
i

(σ
(n)
i + λ)2

vt,τp(i)v
>
t,τp(i)

]

= (d− 1)!E




d∑

j=1

[
d∑

i=1

nλ2σ
(n)
i

(σ
(n)
i + λ)2

]
vt,jv

>
t,j




= (d− 1)!E

[
VtDiag

(
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

, . . . ,

d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

)
V>t

]

= (d− 1)!E

[
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

VtIdV
>
t

]
(23)

Dividing (d− 1)! on both sides of (23) yields

E[(Mtr-tr
t )>Mtr-tr

t ] =
n

d
E

[
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

]
Id. (24)

Next, we find the expected covariance matrix 1
n2E[∇`tr-trt (w0,?)(∇`tr-trt (w0,?))

>].

E[∇`tr-trt (w0,?)(∇`tr-trt (w0,?))
>]

= E[(Mtr-tr
t )>Mtr-tr

t (w0,? −wt)(w0,? −wt)
>(Mtr-tr

t )>Mtr-tr
t ]

(i)
= E

[
VtDiag

(
nλ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
nλ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t (w0,? −wt)(w0,? −wt)

>

·VtDiag

(
nλ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
nλ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t

]
. (25)

Here step (i) uses the SVD of Xt and the computation in (22). Combining (24) and (25), we derive
the asymptotic covariance matrix of using Ltr-tr as

AsymCov(ŵtr-tr
0,T )

= E[∇−2`tr-trt ]Cov[∇`tr-trt (w0,?)]E[∇−2`tr-trt ]

=
d2

n2

(
E

[
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

])−2

· E
[
VtDiag

(
nλ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
nλ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t (w0,? −wt)(w0,? −wt)

>

·VtDiag

(
nλ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
nλ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t

]
. (26)

Taking trace in (26), we deduce

AsymMSE(ŵtr-tr
0,T )

= tr(AsymCov(ŵtr-tr
0,T ))

=
d2

n2

(
E

[
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

])−2

· tr
(
E

[
VtDiag

(
n2λ4(σ

(n)
1 )2

(σ
(n)
1 + λ)4

, . . . ,
n2λ4(σ

(n)
d )2

(σ
(n)
d + λ)4

)
V>t (w0,? −wt)(w0,? −wt)

>
])

(i)
=
d2

n2

(
E

[
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

])−2
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· n
2

d
tr

(
E

[
d∑

i=1

λ4(σ
(n)
i )2

(λ+ σ
(n)
i )4

VtIdV
>
t (w0,? −wt)(w0,? −wt)

>
])

= d
E
[∑d

i=1 λ
4(σ

(n)
i )2/(λ+ σ

(n)
i )4

]

(
E
[∑d

i=1 λ
2σ

(n)
i /(λ+ σ

(n)
i )2

])2 · tr
(
E[(w0,? −wt)(w0,? −wt)

>]
)

= dR2
E
[∑d

i=1(σ
(n)
i )2/(λ+ σ

(n)
i )4

]

(
E
[∑d

i=1 σ
(n)
i /(λ+ σ

(n)
i )2

])2 , (27)

where step (i) utilizes the independence between wt and Xt and applies the permutation trick in

(23) to find E
[
VtDiag

(
n2λ4(σ

(n)
1 )2

(σ
(n)
1 +λ)4

, . . . ,
n2λ4(σ

(n)
d )2

(σ
(n)
d +λ)4

)
V>t

]
.

• Asymptotic variance of ŵtr-val
0,T . Similar to the no-split case, we compute the Hessian

1
n2

E[∇2`tr-valt ] = 1
n2

E[(Mtr-val
t )>Mtr-val

t ] first.

E[(Mtr-val
t )>Mtr-val

t ]

= E
[(

Id −
(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>Xtrain
t

)>
(Xval

t )>Xval
t

·
(
Id −

(
(Xtrain)>t Xtrain

t + n1λId
)−1

(Xtrain
t )>Xtrain

t

)]

(i)
= n2E

[(
Id −

(
(Xtrain

t )>Xtrain
t + n1λId

)−1
((Xtrain

t )>Xtrain
t

)>

·
(
Id −

(
(Xtrain)>t Xtrain

t + n1λId
)−1

(Xtrain
t )>Xtrain

t

)]

(ii)
= n2E

[
Vtrain
t

(
Id − ((Dtrain

t )>Dtrain
t + n1λId)

−1(Dtrain
t )>Dtrain

t

)2
(Vtrain

t )>
]
, (28)

where (i) uses the data generating assumption E[(Xval
t )>Xval

t ] = n2Id and the independence be-
tween Xtrain

t and Xval
t , and (ii) follows from the SVD of Xtrain

t = Utrain
t Dtrain

t (Vtrain
t )>.

Here we denote σ(n1)
1 ≥ · · · ≥ σ

(n1)
d as the eigenvalues of 1

n1
(Xtrain

t )>Xtrain
t . Thus, we have

(Dtrain
t )>Dtrain

t = Diag(n1σ
(n1)
1 , . . . , n1σ

(n1)
d ). We can now further simplify (28) as

n2E
[
Vtrain
t

(
Id − ((Dtrain

t )>Dtrain
t + n1λId)

−1(Dtrain
t )>Dtrain

t

)2
(Vtrain

t )>
]

(i)
= n2E

[
Vtrain
t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>
]

(ii)
=

n2

d
E

[
d∑

i=1

λ2

(λ+ σ
(n1)
i )2

]
Id. (29)

Step (i) follows from the same computation in (22), and step (ii) uses the permutation trick in (23).

Next, we find the expected covariance matrix 1
n2
2
E[∇`tr-trt (w0,?)(∇`tr-trt (w0,?))

>].

E[∇`tr-trt (w0,?)(∇`tr-trt (w0,?))
>]

= E[(Mtr-tr
t )>Mtr-tr

t (w0,? −wt)(w0,? −wt)
>(Mtr-tr

t )>Mtr-tr
t ]

= E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(w0,? −wt)(w0,? −wt)
>
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·Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]
. (30)

Combining (29) and (30), we derive the asymptotic covariance matrix of using Ltr-val as

AsymCov(ŵtr-val
0,T )

= E[∇−2`tr-valt ]Cov[∇`tr-valt (w0,?)]E[∇−2`tr-valt ]

=
d2

n2
2

(
E

[
d∑

i=1

λ2

(λ+ σ
(n1)
i )2

])−2

· E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(w0,? −wt)(w0,? −wt)
>

·Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]
. (31)

Taking trace in (31), we deduce
AsymMSE(ŵtr-tr

0,T )

= tr(AsymCov(ŵtr-tr
0,T ))

=
d2

n2
2

(
E

[
d∑

i=1

λ2

(λ+ σ
(n1)
i )2

])−2

· tr
(
E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(w0,? −wt)(w0,? −wt)
>

·Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
])

(i)
=
d2

n2
2

(
E

[
d∑

i=1

λ2

(λ+ σ
(n)
i )2

])−2

· tr
(
E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(w0,? −wt)(w0,? −wt)
>
])
,

(32)
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where (i) follows from the cyclic property of the matrix trace operation. Due to the isotropicity of
Xtrain
t and Xval

t , we claim that

E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]

(33)

is a diagonal matrix cId with all the diagonal elements identical. We can show the claim bying
taking expectation with respect to Xval

t first. Since Vtrain
t is an orthogonal matrix, Xval

t Vtrain
t has

the same distribution as Xval
t and independent of Xt. We verify that any off-diagonal element of the

matrix expectation

A := EXval
t

[
(Vtrain

t )>(Xval
t )>Xval

t Vtrain
t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)

· (Vtrain
t )>(Xval

t )>Xval
t Vtrain

t

]

is zero. We denote Xval
t Vtrain

t = [x1, . . . ,xn]> ∈ Rn2×d with xi
iid∼ N(0, Id). For k 6= `, the

(k, `)-th entry Ak,` of A is

Ak,` = E


∑

j

(
λ2

(σ
(n1)
j + λ)2

(∑

i

xk,ixj,i

)(∑

i

xj,ix`,i

))


= E


∑

j

λ2

(σ
(n1)
j + λ)2

(∑

m,n

xk,mxj,mxj,nx`,n

)


(i)
= 0,

where xi,j denotes the j-th element of xi. Equality (i) holds, since either xk,m or x`,n only appears
once in each summand. Therefore, we can write A = Diag (A1,1, . . . , Ad,d) with Ak,k being

Ak,k = E


∑

j

λ2

(σ
(n1)
j + λ)2

(∑

m,n

xk,mxj,mxj,nx`,n

)


= E

[
λ2

(σ
(n1)
k + λ)2

(∑

m,n

xk,mxk,mxk,nxk,n

)]
.

Observe that Ak,k only depends on σ(n1)
k . Plugging back into (33), we have

E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]

= E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
Diag(A1,1, . . . , Ad,d)

20



·Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]

= E
[
Vtrain
t Diag

(
λ2A1,1

(σ
(n1)
1 + λ)2

, . . . ,
λ2Ad,d

(σ
(n1)
d + λ)2

)
(Vtrain

t )>
]

(i)
= cId,

where equality (i) utilizes the permutation trick in (24). To this end, it is sufficient to find c as

c =
1

d
tr

(
E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
])

=
1

d
tr

(
E
[
Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

])
. (34)

Observe again that Xval
t Vtrain

t ∈ Rn2×d is a Gaussian random matrix. We rewrite (34) as

c =
1

d
E







n2∑

i,j=1

v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vj




2

 , (35)

where vi
iid∼ N(0, Id) is i.i.d. Gaussian random vectors for i = 1, . . . , n2. To compute (35), we need

the following result.

Claim 7. Given any symmetric matrix A ∈ Rd×d and i.i.d. standard Gaussian random vectors
v,u

iid∼ N(0, Id), we have

E
[
(v>Av)2

]
= 2‖A‖2Fr + tr2(A) and (36)

E
[
(v>Au)2

]
= ‖A‖2Fr. (37)

Proof of Claim 7. We show (36) first. We denote Ai,j as the (i, j)-th element of A and vi as the i-th
element of v. Expanding the quadratic form, we have

E
[
(v>Av)2

]
= E


 ∑

i,j,k,`≤d
vivjvkv`Ai,jAk,`




= E


∑

i≤d
v4
iA

2
i,i


+ E


∑

i6=j
v2
i v

2
j (A2

i,j +Ai,iAj,j +Ai,jAj,i)




= 3
∑

i≤d
A2
i,i +

∑

i 6=j
(A2

i,j +Ai,iAj,j +Ai,jAj,i)

= tr2(A) + 2
∑

i≤d
A2
i,i +

∑

i 6=j
(A2

i,j +Ai,jAj,i)

= tr2(A) + 2‖A‖2Fr.
Next, we show (37) by the cyclic property of race.

E
[
(v>Au)2

]
= tr

(
E
[
uu>Avv>A

])
= tr(A2) = ‖A‖2Fr.
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We back to the computation of (35) using Claim 7.

c =
1

d
E




n2∑

i,j=1

(
v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vj

)2



=
1

d
E



n2∑

i=1

(
v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vi

)2



+
1

d
E


∑

i 6=j

(
v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vj

)2



=
n2

d
E

[
tr2

(
Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

))]

+ 2
n2

d
E



∥∥∥∥∥Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)∥∥∥∥∥

2

Fr




+
n2(n2 − 1)

d
E



∥∥∥∥∥Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)∥∥∥∥∥

2

Fr




=
n2

d


E

[
d∑

i=1

λ2

(σ
(n1)
i + λ)2

]2

+ (n2 + 1)E

[
d∑

i=1

λ4

(σ
(n1)
i + λ)4

]
 . (38)

Combining (38) and (33), by the independence between wt and Xtrain
t ,Xval

t , we compute (32) as

AsymMSE(ŵtr-tr
0,T )

=
d2

n2
2

(
E

[
d∑

i=1

λ2

(λ+ σ
(n1)
i )2

])−2

· n2

d


E

[
d∑

i=1

λ2

(σ
(n1)
i + λ)2

]2

+ (n2 + 1)E

[
d∑

i=1

λ4

(σ
(n1)
i + λ)4

]


· E
[
(w0,? −wt)(w0,? −wt)

>]

=
dR2

n2

E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

]2
+ (n2 + 1)E

[∑d
i=1 λ

4/(σ
(n1)
i + λ)4

]

(
E
[∑d

i=1 λ
2/(λ+ σ

(n1)
i )2

])2 .

The proof is complete.

B.3 Optimal rate of the train-val method at finite (n, d)

Corollary 8 (Optimal rate of the train-val method at finite (n, d)). For any (n, d) and any split ratio
(n1, n2) = (n1, n−n1), the optimal rate (by tuning the regularization λ > 0) of the train-val method
is achieved at

inf
λ>0

AsymMSE
(
ŵtr-val

0,T (n1, n2;λ)
)

= lim
λ→∞

AsymMSE
(
ŵtr-val

0,T (n1, n2;λ)
)

=
(d+ n2 + 1)R2

n2
.

Further optimizing the rate over n2, the best rate is taken at (n1, n2) = (0, n), in which the rate is

infλ>0, n2∈[n] AsymMSE
(
ŵtr-val

0,T (n1, n2;λ)
)

=
(d+ n+ 1)R2

n
.

Discussion: Using all data as validation Corollary 8 suggests that the optimal asymptotic rate of
the train-val method is obtained at λ =∞ and (n1, n2) = (0, n). In other words, the optimal choice
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for the train-val method is to use all the data as validation. In this case, since there is no training data,
the inner solver reduces to the identity map: A∞,0(w0; Xt,yt) = w0, and the outer loop reduces
to learning a single linear model w0 on all the tasks combined. We remark that while the optimality
of such a split ratio is likely an artifact of the data distribution we assumed (noiseless realizable
linear model) and may not generalize to other meta-learning problems, we do find experimentally
that using more data as validation (than training) can also improve the performance on real meta-
learning tasks (see Table 2).

Proof of Corollary 8 Fix n1 ∈ [n] and n2 = n− n1. Recall from Lemma 5 that

AsymMSE
(
ŵtr-val

0,T (n1, n2;λ)
)

=
dR2

n2
·
E
[(∑d

i=1 λ
2/(σ

(n1)
i + λ)2

)2

+ (n2 + 1)
∑d
i=1 λ

4/(σ
(n1)
i + λ)4

]

(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2 .

Clearly, as λ→∞, we have

lim
λ→∞

AsymMSE
(
ŵtr-val

0,T (n1, n2;λ)
)

=
dR2

n2
· d

2 + (n2 + 1)d

d2
=

(d+ n2 + 1)R2

n2
.

It remains to show that the above quantity is a lower bound for AsymMSE
(
ŵtr-val

0,T (n1, n2;λ)
)

for
any λ > 0, which is equivalent to

E
[(∑d

i=1 λ
2/(σ

(n1)
i + λ)2

)2

+ (n2 + 1)
∑d
i=1 λ

4/(σ
(n1)
i + λ)4

]

(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2 ≥ d+ n2 + 1

d
, for all λ > 0.

(39)

We now prove (39). For i ∈ [n1], define random variables

Xi :=
λ2

(σ
(n1)
i + λ)2

∈ [0, 1] and Yi := 1−Xi ∈ [0, 1].

Then the left-hand side of (39) can be rewritten as

E
[
(d− n1 +

∑n1

i=1Xi)
2

+ (n2 + 1)
(
d− n1 +

∑n1

i=1X
2
i

)]

(E[d− n1 +
∑n
i=1Xi])

2

=
E
[
(d−∑n1

i=1 Yi)
2

+ (n2 + 1)
(
d− 2

∑n1

i=1 Yi +
∑n1

i=1 Y
2
i

)]

(E[d−∑n1

i=1 Yi])
2

=
d2 + (n2 + 1)d− 2(d+ n2 + 1)E[

∑
Yi] + E

[
(
∑
Yi)

2
]

+ (n2 + 1)E
[∑

Y 2
i

]

d2 − 2dE[
∑
Yi] + (E[

∑
Yi])

2

By algebraic manipulation, inequality (39) is equivalent to showing that

E
[
(
∑
Yi)

2
]

+ (n2 + 1)E
[∑

Y 2
i

]

(E[
∑
Yi])

2 ≥ d+ n2 + 1

d
. (40)

Clearly, E[(
∑
Yi)

2] ≥ (E[
∑
Yi])

2. By Cauchy-Schwarz we also have

E
[∑

Y 2
i

]
≥ 1

n1
E
[(∑

Yi

)2
]
≥ 1

n1

(
E
[∑

Yi

])2

.

Therefore we have

E
[
(
∑
Yi)

2
]

+ (n2 + 1)E
[∑

Y 2
i

]

(E[
∑
Yi])

2 ≥ 1 +
n2 + 1

n1
≥ 1 +

n2 + 1

d
=
d+ n2 + 1

d
,

where we have used that n1 ≤ n ≤ d. This shows (40) and consequently (39).
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B.4 Rate of the train-train method in the proportional limit

Theorem 9 (Exact rates of the train-train method in the proportional limit). In the high-dimensional
limiting regime d, n→∞, d/n→ γ where γ ∈ (0,∞) is a fixed shape parameter, for any λ > 0

limd,n→∞,d/n=γ AsymMSE
(
ŵtr-tr

0,T (n;λ)
)

= ρλ,γR
2.

where ρλ,γ =4γ2
[
(γ − 1)2+(γ + 1)λ

]
/(λ+1+γ−

√
(λ+ γ + 1)2 − 4γ)2/

(
(λ+ γ + 1)2 − 4γ

)3/2
.

Proof of Theorem 9 Let Σ̂n := 1
nXtX

>
t denote the sample covariance matrix of the inputs in a

single task (t). By Lemma 5, we have

AsymMSE(ŵtr-tr
0,T (n;λ)) = R2 ·

1
dE
[∑d

i=1 σi(Σ̂n)2/(σi(Σ̂n) + λ)4
]

(
1
dE
[∑d

i=1 σi(Σ̂n)/(σi(Σ̂n) + λ)2
])2

= R2 · 1

d
E
[
tr
(

(Σ̂n + λId)
−4Σ̂2

n

)]

︸ ︷︷ ︸
In,d

/{ 1

d
E
[
tr
(

(Σ̂n + λId)
−2Σ̂n

)]

︸ ︷︷ ︸
IIn,d

}2

.

(41)

We now evaluate quantities In,d and IIn,d in the high-dimensional limit of d, n → ∞, d/n → γ ∈
(0,∞). Consider the (slightly generalized) Stieltjes transform of Σ̂n defined for all λ1, λ2 > 0:

s(λ1, λ2) := lim
d,n→∞, d/n→γ

1

d
E
[
tr
(

(λ1Id + λ2Σ̂n)−1
)]
.

As the entries of Xt are i.i.d. N(0, 1), the above limiting Stieltjes transform is the Stieltjes form of
the Marchenko-Pastur law, which has a closed form (see, e.g. [9, Equation (7)])

s(λ1, λ2) = λ−1
2 s(λ1/λ2, 1) =

1

λ2
· γ − 1− λ1/λ2 +

√
(λ1/λ2 + 1 + γ)2 − 4γ

2γλ1/λ2

=
γ − 1− λ1/λ2 +

√
(λ1/λ2 + 1 + γ)2 − 4γ

2γλ1
.

(42)

Now observe that differentiating s(λ1, λ2) yields quantity II (known as the derivative trick of Stielt-
jes transforms). Indeed, we have

− d

dλ2
s(λ1, λ2) = − d

dλ2
lim

d,n→∞, d/n→γ
1

d
E
[
tr
(

(λ1Id + λ2Σ̂n)−1
)]

= lim
d,n→∞, d/n→γ

1

d
E
[
− d

dλ2
tr
(

(λ1Id + λ2Σ̂n)−1
)]

= lim
d,n→∞, d/n→γ

1

d
E
[
tr
(

(λ1Id + λ2Σ̂n)−2Σ̂n

)]
.

(43)

(Above, the exchange of differentiation and limit is due to the uniform convergence of the deriva-
tives, which holds at any λ1, λ2 > 0. See Appendix B.4.1 for a detailed justification.) Taking
λ1 = λ and λ2 = 1, we get

lim
d,n→∞, d/n→γ

IIn,d = lim
d,n→∞, d/n→γ

1

d
E
[
tr
(

(λId + Σ̂n)−2Σ̂n

)]
= − d

dλ2
s(λ1, λ2)|λ1=λ,λ2=1.

Similarly we have

lim
d,n→∞, d/n→γ

In,d = lim
d,n→∞,d/n→γ

1

d
E
[
tr
(

(λId + Σ̂n)−4Σ̂2
n

)]
= −1

6

d

dλ1

d2

dλ2
2

s(λ1, λ2)|λ1=λ,λ2=1.

Evaluating the right-hand sides from differentiating the closed-form expression (42), we get

lim
d,n→∞, d/n→γ

In,d =
1

2γ
· λ+ 1 + γ√

(λ+ 1 + γ)2 − 4γ
− 1

2γ
,
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lim
d,n→∞, d/n→γ

IIn,d =
(γ − 1)2 + (γ + 1)λ

((λ+ 1 + γ)2 − 4γ)
5/2

.

Substituting back to (41) yields that

lim
d,n→∞, d/n→γ

AsymMSE(ŵtr-tr
0,T (n;λ)) = lim

d,n→∞, d/n→γ
R2 · In,d/II2

n,d

= R2 · 4γ2
[
(γ − 1)2 + (γ + 1)λ

]

((λ+ 1 + γ)2 − 4γ)5/2 ·
(

λ+1+γ√
(λ+1+γ)2−4γ

− 1

)2

= R2 · 4γ2
[
(γ − 1)2 + (γ + 1)λ

]

((λ+ 1 + γ)2 − 4γ)3/2 ·
(
λ+ 1 + γ −

√
(λ+ 1 + γ)2 − 4γ

)2 .

This proves the desired result.

B.4.1 Interchanging derivative and expectation / limit

Here we rigorously establish the interchange of the derivative and the expectation / limit used in (43).
For convenience of notation let Σ = Σ̂n = X>t Xt/n denote the empirical covariance matrix of Xt.
We wish to show that
d

dλ2
lim

d,n→∞,d/n→γ
1

d
E
[
tr
(
(λ1Id + λ2Σ)−1

)]
= lim
d,n→∞,d/n→γ

1

d
E
[
d

dλ2
tr
(
(λ1Id + λ2Σ)−1

)]
.

This involves the interchange of derivative and limit, and then the interchange of derivative and
expectation.

Interchange of derivative and expectation First, we show that for any fixed (d, n),

d

dλ2
E
[
tr
(
(λ1Id + λ2Σ)−1

)]
= E

[
d

dλ2
tr
(
(λ1Id + λ2Σ)−1

)]
.

By definition of the derivative, we have

d

dλ2
E
[
tr
(
(λ1Id + λ2Σ)−1

)]
= lim
t→0

E

[
tr
(
(λ1Id + λ2Σ + tΣ)−1

)
− tr

(
(λ1Id + λ2Σ)−1

)

t

]
.

For any A � 0, the function t 7→ tr((A+tB)−1) is continuously differentiable at t = 0 with deriva-
tive −tr(A−2B), and thus locally Lipschitz around t = 0 with Lipschitz constant |tr(A−2B)|+ 1.
Applying this in the above expectation with A = λ1Id + λ2Σ � λ1Id and B = Σ, we get that for
sufficiently small |t|, the fraction inside the expectation is upper bounded by |tr(λ−2

1 Σ)| + 1 < ∞
uniformly over t. Thus by the Dominated Convergence Theorem, the limit can be passed into the
expectation, which yields the expectation of the derivative.

Interchange of derivative and limit Define fn,d(λ2) := 1
dE
[
tr
(
(λ1Id + λ2Σ)−1

)]
. It suffices

to show that
d

dλ2
lim

d,n→∞,d/n→γ
fn,d(λ2) = lim

d,n→∞,d/n→γ
f ′n,d(λ2),

where

f ′n,d(λ2) = E
[
d

dλ2

1

d
tr
(
(λ1Id + λ2Σ)−1

)]
= −1

d
E
[
tr
(
(λ1Id + λ2Σ)−2Σ

)]

by the result of the preceding part.

As fn,d(λ2) → s(λ1, λ2) pointwise over λ2 by properties of the Wishart matrix [4] and each indi-
vidual fn,d is differentiable, it suffices to show that the derivatives f ′n,d(λ̃2) converges uniformly for
λ̃2 in a neighborhood of λ2. Observe that can rewrite f ′n,d as

f ′n,d(λ̃2) = −Eµ̂n,d
[
Eλ∼µ̂n,d

[
gλ̃2

(λ)
]]
,
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where µ̂n,d is the empirical distribution of the eigenvalues of Σ, and

gλ̃2
(λ) :=

λ

(λ1 + λ̃2λ)2
≤ 1

λ1λ̃2

for all λ ≥ 0.

Therefore, as µ̂n,d converges weakly to the Marchenko-Pastur distribution with probability one and
gλ̃2

is uniformly bounded for λ̃2 in a small neighborhood of λ2, we get that f ′n,d(λ̃2) does converge
uniformly to the expectation of gλ̃2

(λ) under the Marchenko-Pastur distribution. This shows the
desired interchange of derivative and limit.

B.5 Proof of Theorem 4

Throughout this proof we assume thatR2 = 1 without loss of generality (as all the rates are constant
multiples of R2).

Part I: Optimal rate for Ltr-tr By Theorem 9, we have
inf
λ>0

lim
d,n→∞,d/n=γ

AsymMSE
(
ŵtr-tr

0,T (n;λ)
)

= inf
λ>0

4γ2
[
(γ − 1)2 + (γ + 1)λ

]

(λ+ 1 + γ −
√

(λ+ γ + 1)2 − 4γ)2 · ((λ+ γ + 1)2 − 4γ)
3/2

︸ ︷︷ ︸
:=f(λ,γ)

.

In order to bound infλ>0 f(λ, γ), picking any λ = λ(γ) gives f(λ(γ), γ) as a valid upper bound,
and our goal is to choose λ that yields a bound as tight as possible. Here we consider the choice

λ = λ(γ) = max {1− γ/2, γ − 1/2} = (1− γ/2)1 {γ ≤ 1}+ (γ − 1/2)1 {γ > 1}
which we now show yields the claimed upper bound.

Case 1: γ ≤ 1 Substituting λ = 1− γ/2 into f(λ, γ) and simplifying, we get

f(1− γ/2, γ) =
2(γ2 − 3γ + 4)

(2− γ/2)3
=: g1(γ).

Clearly, g1(0) = 1 and g1(1) = 32/27. Further differentiating g1 twice gives

g′′1 (γ) =
γ2 + 7γ + 4

(2− γ/2)5
> 0 for all γ ∈ [0, 1].

Thus g1 is convex on [0, 1], from which we conclude that

g1(γ) ≤ (1− γ) · g1(0) + γ · g1(1) = 1 +
5

27
γ.

Case 2: γ > 1 Substituting λ = γ − 1/2 into f(λ, γ) and simplifying, we get

f(γ − 1/2, γ) =
2γ2(4γ2 − 3γ + 1)

(2γ − 1/2)3
=: g2(γ).

We have g2(1) = g1(1) = 32/27. Further differentiating g2 gives

g′2(γ) = − 1

(4γ − 1)2
− 6

(4γ − 1)3
− 6

(4γ − 1)4
+ 1 < 1 for all γ > 1.

Therefore we have for all γ > 1 that

g2(γ) = g2(1) +

∫ γ

1

g′2(t)dt ≤ g2(1) + γ − 1 = γ +
5

27
.

Combining Case 1 and 2, we get
inf
λ>0

f(λ, γ) ≤ g1(γ)

≤ 1 {γ ≤ 1}+ g2(γ)1 {γ > 1} ≤
(

1 +
5

27
γ

)
1 {γ ≤ 1}+

(
5

27
+ γ

)
1 {γ > 1}

= max

{
1 +

5

27
γ,

5

27
+ γ

}
.

This is the desired upper bound for Ltr-tr.
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Equality at γ = 1 We finally show that the above upper bound becomes an equality when γ = 1.
At γ = 1, we have

f(λ, 1) =
8λ

(λ+ 2−
√
λ2 + 4λ)2(λ2 + 4λ)3/2

=
8λ−4

(1 + 2/λ−
√

1 + 4/λ)2(1 + 4/λ)3/2
.

Make the change of variable t =
√

1 + 4/λ so that λ−1 = (t2 − 1)/4, minimizing the above
expression is equivalent to minimizing

(t2 − 1)4/32

(t2/2− t+ 1/2)2t3
=

(t+ 1)4

8t3

over t > 1. It is straightforward to check (by computing the first and second derivatives) that the
above quantity is minimized at t = 3 with value 32/27. In other words, we have shown

inf
λ>0

f(λ, 1) =
32

27
= max

{
1 +

5

27
γ,

5

27
+ γ

}∣∣∣∣
γ=1

,

that is, the equality holds at γ = 1.

Part II: Optimal rate for Ltr-val We now prove the result on Ltr-val, that is,

inf
λ>0,s∈(0,1)

lim
d,n→∞,d/n=γ

AsymMSE
(
ŵtr-val

0,T (ns, n(1− s);λ)
)

(i)
= lim

d,n→∞,d/n=γ
inf

λ>0,n1+n2=n
AsymMSE

(
ŵtr-val

0,T (n1, n2;λ)
)

︸ ︷︷ ︸
d+n+1
n

(ii)
= 1 + γ.

First, equality (ii) follows from Corollary 8 and the fact that (d + n + 1)/n → 1 + γ. Second, the
“≥” direction of equality (i) is trivial (since we always have “inf lim ≥ lim inf”). Therefore we get
the “≥” direction of the overall equality, and it remains to prove the “≤” direction.

For the “≤” direction, we fix any λ > 0, and bound AsymMSE(ŵtr-val
0,T (n1, n2;λ)) (and conse-

quently its limit as d, n→∞.) We have from Lemma 5 that

AsymMSE(ŵtr-val
0,T (n1, n2;λ))

=
d

n2
·
E
[(∑d

i=1 λ
2/(σ

(n1)
i + λ)2

)2

+ (n2 + 1)
∑d
i=1 λ

4/(σ
(n1)
i + λ)4

]

(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2

≤ d

n2
· d2 + (n2 + 1)d
(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2

=
d+ n2 + 1

n2
· 1
(
E
[

1
d

∑d
i=1 λ

2/(σ
(n1)
i + λ)2

])2

Observe that

E

[
1

d

d∑

i=1

λ2

(σ
(n1)
i + λ)2

]
(i)

≥ E


 λ2

(∑d
i=1 σ

(n1)
i /d+ λ

)2




(ii)

≥ λ2

(
E
[∑d

i=1 σ
(n1)
i /d

]
+ λ
)2

(iii)
=

λ2

(1 + λ)2
,

where (i) follows from the convexity of t 7→ λ2/(t + λ)2 on t ≥ 0; (ii) follows from the
same convexity and Jensen’s inequality, and (iii) is since E

[∑d
i=1 σ

(n1)
i

]
= E

[
tr( 1

n1
X>t Xt)

]
=
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E
[
‖Xt‖2Fr /n1

]
= d. Applying this in the preceeding bound yields

AsymMSE(ŵtr-val
0,T (n1, n2;λ)) ≤ d+ n2 + 1

n2
· (1 + λ)2

λ2
.

Further plugging in n1 = ns and n2 = n(1− s) for any s ∈ (0, 1) yields

lim
d,n→∞,d/n→γ

AsymMSE(ŵtr-val
0,T (ns, n(1− s);λ)) ≤ γ + 1− s

1− s · (1 + λ)2

λ2
.

Finally, the right-hand side is minimized at λ→∞ and s = 0, from which we conclude that

inf
λ>0,s∈(0,1)

lim
d,n→∞, d/n→γ

AsymMSE(ŵtr-val
0,T (n1, n2;λ)) ≤ 1 + γ,

which is the desired “≤” direction.

C Connections to Bayesian estimator

Here we discuss the relationship between our train-train meta-learining estimator using ridge regres-
sion solvers and a Bayesian estimator under a somewhat natural hierarchical generative model for
the realizable setting in Section 4. We show that these two estimators are not equal in general, albeit
they have some similarities in their expressions.

We consider the following hierarchical probabilitistic model:

w0,? ∼ N

(
0,
σ2
w

d
Id

)
, wt|w0,?

iid∼ N

(
w0,?,

R2

d
Id

)
, yt = Xtwt + σzt where zt

iid∼ N(0, In).

This model is similar to our realizable linear model (6), except that w0 has a prior and that there is
observation noise in the data (such that data likelihoods and posteriors are well-defined). We also
note that the R2/d variance for wt guarantees that E[‖wt − w0,?‖2] = R2, consistent with our
definition (7).

Bayesian estimator We now derive the Bayesian posterior mean estimator of w0,?, which requires
us to compute the posterior distribution of w0,? given the data {(Xt,yt)}Tt=1

8.

We begin by computing the likelihood of one task by marginalizing over wt:

p(Xt,yt|w0,?) ∝
∫
p(wt|w0,?) · p(yt|Xt,wt)dwt

∝
∫

exp

(
−‖wt −w0,?‖2

2R2/d

)
· exp

(
−‖yt −Xtwt‖2

2σ2

)
dwt

(i)∝ exp

(
−‖w0,?‖2

2R2/d
+

1

2

(
w0,?

R2/d
+

X>t yt
σ2

)>(
X>t Xt

σ2
+

Id
R2/d

)−1(
w0,?

R2/d
+

X>t yt
σ2

))

∝ exp

(
−1

2
w>0,?

((
X>t Xt +

dσ2

R2
Id

)−1
X>t Xt

R2/d

)
w0,? + w>0,?

(
X>t Xt +

dσ2

R2
Id

)−1
X>t yt
R2/d

)
,

where (i) is obtained by integrating a multivariate Gaussian density over wt, and “∝” drops all the
terms that do not depend on w0,?. Therefore, by the Bayes rule, the overall posterior distribution of
w0,? is given by

p
(
w0,?|{(Xt,yt)}Tt=1

)
∝ p(w0,?) ·

T∏

t=1

p(Xt,yt|w0,?)

∝ exp

(
−‖w0,?‖2

2σ2
w/d

)
·

8Hereafter we treat Xt as fixed, as the density of Xt won’t affect the Bayesian calculation.
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T∏

t=1

exp

(
−1

2
w>0,?

((
X>t Xt +

dσ2

R2
Id

)−1
X>t Xt

R2/d

)
w0,? + w>0,?

(
X>t Xt +

dσ2

R2
Id

)−1
X>t yt
R2/d

)
.

This means that the posterior distribution of w0,? is Gaussian, with mean , i.e. the Bayesian estima-
tor, equal to9

ŵBayes
0,T := E

[
w0,? | {(Xt,yt)}Tt=1

]
= (ABayes

T )−1cBayesT ,

where

ABayes
T :=

d

σ2
w

Id +

T∑

t=1

(
X>t Xt +

dσ2

R2
Id

)−1
X>t Xt

R2/d
,

cBayesT :=

T∑

t=1

(
X>t Xt +

dσ2

R2
Id

)−1
X>t yt
R2/d

.

We note that ŵBayes
0,T has a similar form as our train-train estimator, but is not exactly the same.

Indeed, recall the closed form of our train-train estimator is (cf. (10))

ŵtr-tr
0,T = (Atr-tr

T )−1ctr-trT ,

where

Atr-tr
T =

T∑

t=1

(
X>t Xt + nλId

)−2
X>t Xt,

ctr-trT =

T∑

t=1

(
X>t Xt + nλId

)−2
X>t yt.

As ŵBayes
0,T uses the inverse and ŵtr-tr

0,T uses the squared inverse, these two sets of estimators are not
the same in general, no matter how we tune the λ in the train-train estimator. This is true even if we
set σw = ∞ so that the prior of w0,? becomes degenerate (and the Bayesian estimator reduces to
the MLE).

D Experiments on few-shot image classification

We further investigate the comparison between the train-train and train-val type methods in few-shot
image classification on miniImageNet [32] and tieredImageNet [33].

Methods We instantiate the train-train and train-val method in the centroid meta-learning setting
with a ridge solver. The methods are almost exactly the same as in our theoretical setting in (2)
and (3), with the only differences being that the parameters wt (and hence w0) parametrize a deep
neural network instead of a linear classifier, and the loss function is the cross-entropy instead of
squared loss. Mathematically, we minimize the following two loss functions:

Ltr-val
λ,n1

(w0) :=
1

T

∑

t=1

`tr-valt (w0) =
1

T

T∑

t=1

`

(
arg min

wt

`(wt; X
train
t ,ytrain

t ) + λ ‖wt −w0‖2 ; Xval
t ,y

val
t

)
,

Ltr-tr
λ (w0) :=

1

T

T∑

t=1

`tr-trt (w0) =
1

T

T∑

t=1

`

(
arg min

wt

`(wt; Xt,yt) + λ ‖wt −w0‖2 ; Xt,yt

)
,

where (Xt,yt) is the data for task t of size n, and (Xtrain
t ,ytrain

t ) and (Xval
t ,y

val
t ) is a split of the

data of size (n1, n2). We note that both loss functions above have been considered in prior work
(Ltr-val in iMAML [31], and Ltr-tr in Meta-MinibatchProx [46]), though we use slightly different
implementation details from these prior work to make sure that the two methods here are exactly the
same except for whether the split is used. Additional details about the implementation can be found
in Appendix D.

9Any density p(w) ∝ exp(−w>Aw/2 + w>c) specifies a Gaussian distreibution N(µ,Σ), where A =
Σ−1 and c = Σ−1µ, so that µ = A−1c.
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Experimental settings We adopt the episodic training procedure [13, 46, 31]. In meta-test, we
sample a set of N -way (K + 1)-shot test tasks. The first K instances are for training and the
remaining one is for testing. In meta-training, we use the “higher way” training strategy. We set
the default choice of the train-validation split ratio to be an even split n1 = n2 = n/2 following
[46, 31]. For example, for a 5-way 5-shot classification setting, each task contains 5× (5 + 1) = 30
total images, and we set n1 = n2 = 15. (We additionally investigate the optimality of this split ratio
in Appendix D.1.) We evaluate both methods under the transduction setting where the information
is shared between the test data via batch normalization. We report the average accuracy over 2, 000
random test episodes with 95% confidence interval.

Optimization and architecture For both methods, we run a few gradient steps on the inner argmin
problem to obtain (an approximation of) wt, and plug wt into the ∇w0

`
{tr-val,tr-tr}
t (w0) (which

involves wt through implicit function differentiation) for optimizing w0 in the outer loop.

For both train-train and train-val methods, we use the standard 4-layer convolutional network in [13,
46] as the backbone (i.e. the architecture for wt). We further tune their hyper-parameters, such as
the regularization constant λ, the learning rate (initial learning rate and its decay strategy), and the
gradient clipping threshold.

Datasets We experiment on miniImageNet [32] and tieredImageNet [33]. MiniImageNet consists
of 100 classes of images from ImageNet [21] and each class has 600 images of resolution 84 ×
84 × 3. We use 64 classes for training, 16 classes for validation, and the remaining 20 classes for
testing [32]. TieredImageNet consists of 608 classes from the ILSVRC-12 data set [35] and each
image is also of resolution 84 × 84 × 3. TieredImageNet groups classes into broader hierarchy
categories corresponding to higher-level nodes in the ImageNet. Specifically, its top hierarchy has
20 training categories (351 classes), 6 validation categories (97 classes) and 8 test categories (160
classes). This structure ensures that all training classes are distinct from the testing classes, providing
a more realistic few-shot learning scenario.

Results Table 1 presents the percent classification accuracy on miniImagenet and tieredImageNet.
We find that the train-train method consistently outperforms the train-val method. Specifically, on
miniImageNet, train-train method outperforms train-val by 2.01% and 3.87% on the 1-shot 5-way
and 5-shot 5-way tasks respectively; On tieredImageNet, train-train on average improves by about
6.40% on the four testing cases. These results show the advantages of train-train method over train-
val and support our theoretical findings in Theorem 4.

Table 1: Few-shot classification accuracy (%) on the miniImageNet and tieredImageNet datasets.

m
in

iI
m

ag
e method 1-shot 5-way 5-shot 5-way 1-shot 20-way 5-shot 20-way

train-val 48.76 ± 0.87 63.56 ± 0.95 17.52 ± 0.49 21.32 ± 0.54

train-train 50.77 ± 0.90 67.43 ± 0.89 21.17 ± 0.38 34.30 ± 0.41

tie
re

dI
m

ag
e method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

train-val 50.61 ± 1.12 67.30 ± 0.98 29.18 ± 0.57 43.15 ± 0.72

train-train 54.37 ± 0.93 71.45 ± 0.94 35.56 ± 0.60 54.50 ± 0.71

D.1 Effect of the split ratio for the train-val method

We further tune the split (n1, n2) in the train-val method and report the results in Table 2. As can
be seen, as the number of test samples n2 increases, the percent classification accuracy on both the
miniImageNet and tieredImageNet datasets becomes higher. This testifies our theoretical affirmation
in Corollary 8. However, note that even if we take the best split (n1, n2) = (5, 25) (and compare
again with Table 1), the train-val method still performs worse than the train-train method.

We remark that our theoretical results on train-train performing better than train-val (in Section 4)
rely on the assumptions that the data can be exactly realized by the representation and contains no
label noise. Our experimental results here may suggest that the miniImageNet and tieredImageNet
few-shot tasks may have a similar structure (there exists a NN representation that almost perfectly
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realizes the label with no noise) that allows the train-train method to perform better than the train-
val method.

Table 2: Investigation of the effects of training/validation splitting ratio in the train-val method
(iMAML) to the few-shot classification accuracy (%) on miniImageNet and tieredImageNet.

datasets n1 = 25, n2 = 5 n1 = 15, n2 = 15 n1 = 5, n2 = 25

miniImageNet 62.09 ± 0.97 63.56 ± 0.95 63.92 ± 1.04
tieredImageNet 66.45 ± 1.05 67.30 ± 0.98 67.50 ± 0.94

E Comparison with Cross-Validation on Synthetic Data

We test the effect of using cross-validation for the train-val method on the same synthetic data
(realizable linear centroid meta-learning) as in Section 5.

Method We fix the number of per-task data n = 20, and use 4-fold cross validation in the fol-
lowing two settings: (n1, n2) = (5, 15), and (n1, n2) = (15, 5). In both cases, we partition the
data into 4 parts each with 5 data points, and we roulette over 4 possible partitions of which one as
train and which one as validation. The estimated optimal ŵcv

0 is obtained by minimize the averaged
train-val loss over the 4 partitions:

`cv
t (w0) :=

1

4

4∑

j=1

1

2nval

∥∥∥yval,j
t −Xval,j

t Aλ(w0; Xtrain,j
t ,ytrain,j

t )
∥∥∥

2

,

ŵcv
0 = arg min

w0

1

T

T∑

t=1

`cv
t (w0),

where superscript j denotes the index of the cross-validation. The performance is depicted in Figure
2.
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Figure 2: The scaled (by T ) `2-error of ŵ
{tr-tr,tr-val,cv}
0,T as the ratio d/n varies from 0 to 3 (n = 20

and T = 1000 are fixed). For the cross-validation method, the regularization coefficient λ = 0.5 is
tuned.

Result As showin in Figure 2, for both (n1, n2) = (15, 5) and (n1, n2) = (5, 15), using
cross-validation consistently beats the performance of the train-val method. This demonstrates the
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variance-reduction effect of cross-validation. Note that the best performance (among the cross-
validation methods) is still achieved at n1 = 5, similar as for the vanilla train-val method. However,
numerically, the best cross-validation performance is still not as good as the train-train method.

Leave-one-out cross-validation Figure 3 left further tests with an increased number of per-task
samples n = 40, and incorporates the train-val method with the leave-one-out cross-validation, i.e.,
(n1, n2) = (39, 1) and (n1, n2) = (1, 39). We repeat the experiment 10 times for plotting the error
bar (shaded area). We see that the train-train method still outperforms the train-val method with
leave-one-out validation.

We further increase the per-task sample size n to 200, and test the leave-one-out method with a
sample split of (n1, n2) = (1, 199). We adopt a matrix inverse trick to mitigate the computational
overhead of finding Aλ(w0; Xtrain,j

t ,ytrain,j
t ). To ease the computation, we also vary d from 0 to

400 on a coarse grid (with an increment of 80). From Figure 3 right, we see that the leave-one-out
method can slightly beat the train-train method for some d/n values. Compared to n = 20 and
n = 40 experiments, this is the first time of seeing leave-one-out method outperforms the train-
train method. We suspect that the per-task sample size n plays a vital role in the power of the
leave-one-out method: a large n tends to have a strong variance reduction effect in the leave-one-out
method, so that the performance can be improved. Yet using the leave-one-out method with a large
n invokes a high computational burden.
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Figure 3: The scaled (by T ) `2-error of ŵ
{tr-tr,cv}
0,T as the ratio d/n varies from 0 to 3 (n ∈ {40, 200}

and T = 1000 are fixed). For the cross-validation method, the regularization coefficient λ = 0.5.
Left: n = 40. Leave-out-out CV performs worse than the train-train method. Right: n = 200.
Leave one-out CV appears better than the train-train method for d/n ∈ {1.2, 1.6}.
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