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Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to temporal correlations, particular
end users, or other factors. In this work, we consider the setting where the training
data are structured into groups and test time shifts correspond to changes in the
group distribution. Prior work has approached this problem by attempting to be
robust to all possible test time distributions, which may degrade average perfor-
mance. In contrast, we propose to use ideas from meta-learning to learn models
that are adaptable, such that they can adapt to shift at test time using a batch of
unlabeled test points. We acquire such models by learning to adapt to training
batches sampled according to different distributions, which simulate structural
shifts that may occur at test time. Our primary contribution is to introduce the
framework of adaptive risk minimization (ARM), a formalization of this setting
that lends itself to meta-learning. We develop meta-learning methods for solving
the ARM problem, and compared to a variety of prior methods, these methods
provide substantial gains on image classification problems in the presence of shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test time
will match the training distribution. When this assumption does not hold, the performance of standard
ERM methods typically deteriorates rapidly, and this setting is commonly referred to as distribution
or dataset shift [49, 32]. For instance, we can imagine a handwriting classification system that, after
training on a large database of past images, is deployed to specific end users. Some new users have
peculiarities in their handwriting, leading to shift in the input distribution. This test scenario must be
carefully considered when building machine learning systems for real world applications.

Algorithms for handling distribution shift have been studied under a number of frameworks [49].
Many of these frameworks aim for zero shot generalization to shift, which requires more restrictive
but realistic assumptions. For example, one popular assumption is that the training data are provided
in groups and that distributions at test time will represent either new group distributions or new groups
altogether. This assumption is used by, e.g., group distributionally robust optimization (DRO) [25, 55],
robust federated learning [46, 34], and domain generalization [4, 18]. Constructing training groups or
tasks is generally accomplished by using meta-data, which exists for most datasets. This assumption
allows for more tractable optimization and still permits a wide range of realistic distribution shifts.
However, achieving strong zero shot generalization in this setting is still a hard problem. For example,
DRO methods, which focus on achieving maximal worst case performance, can often be overly
pessimistic and learn models that do not perform well on the actual test distributions [25].
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Figure 1: A schematic of the ARM problem setting and approach, described in detail in Section 3. Left: During
training, we assume access to labeled data along with group information z, which allows us to construct training
distributions that exhibit group distribution shift. For example, a training distribution may place uniform mass on
only a single user’s examples. We use these training distributions to learn a model that is adaptable to distribution
shift via a form of meta-learning. We detail the specific adaptation procedures (orange box) that we consider
in Section 3 and Figure 2. Right: We perform unsupervised adaptation to different test distributions, without
requiring zero shot generalization to shift as in prior methods. If the test shifts we observe are similar to those
simulated by the training distributions, e.g., we deploy the model to new end users at test time, then we expect
that we can effectively adapt to these test distributions for better performance.

In this work, we take a different approach to combating group distribution shift by learning models
that are able to deal with shift by adapting to the test time distribution. To do so, we assume that
we can access a batch of unlabeled data points at test time – as opposed to individual isolated
inputs – which can be used to implicitly infer the test distribution. This assumption is reasonable
in many standard supervised learning setups. For example, we do not access single handwritten
characters from an end user, but rather collections of characters such as sentences or paragraphs.
When combined with the group assumption above, we arrive at a problem setting that is similar to the
standard meta-learning setting [66]. This allows us to extend well established tools and techniques
from meta-learning to address distribution shift problems. Meta-learning typically assumes that
training data are grouped into tasks and new tasks are encountered at meta-test time, however these
new tasks still include labeled examples for adaptation. As illustrated in Figure 1, we instead aim to
train a model that uses unlabeled data to adapt to the test distribution, thereby not requiring the model
to generalize zero shot to all test distributions as in prior approaches.

The main contribution of this paper is to introduce the framework of adaptive risk minimiza-
tion (ARM), in which models have the opportunity to adapt to the data distribution at test time
based on unlabeled data points. This contribution provides a principled approach for designing
meta-learning methods to tackle distribution shift. We introduce an algorithm and instantiate a set
of methods for solving ARM that, given a set of candidate distribution shifts, meta-learns a model
that is adaptable to these shifts. One such method is based on meta-training a model such that
simply updating batch normalization statistics [26] provides effective adaptation at test time, and
we demonstrate that this simple approach can produce surprisingly strong results. Our experiments
demonstrate that the proposed methods, by leveraging the meta-training phase, are able to outperform
prior methods for handling distribution shift in image classification settings exhibiting group shift,
including benchmarks for federated learning [7] and testing image classifier robustness [20].

2 Related Work

A number of prior works have studied distributional shift in various forms [49]. In this section, we
review prior work in robust optimization, meta-learning, and adaptation.

Robust optimization. DRO methods optimize machine learning systems to be robust to adversarial
data distributions, thus optimizing for worst case performance against distribution shift [17, 2, 39, 12,
45, 11, 5]. Recent work has shown that these algorithms can be utilized with deep neural networks,
with additional care taken for regularization and model capacity [55]. Unlike DRO methods, ARM
methods do not require the model to generalize zero shot to all test time distribution shifts, but
instead trains it to adapt to these shifts. Also of particular interest are methods for robustness or
adaptation to different users [22, 8, 28, 13, 37], a setting commonly referred to as robust or fair
federated learning [43, 46, 34]. Unlike these works, we consider the federated learning problem
setting in which we do not assume access to any labels from any test users, as we partition users into
disjoint train and test sets. We argue that this is a realistic setting for many practical machine learning
systems – oftentimes, the only available information from the end user is an unlabeled batch of data.
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Meta-learning. Meta-learning [57, 3, 64, 21] has been most extensively studied in the context of
few shot supervised learning methods [56, 66, 50, 14, 61], i.e., labeled adaptation. The aim of this
work is to extend meta-learning paradigms to problems requiring unlabeled adaptation, with the goal
of tackling distribution shift. We demonstrate in the next section how paradigms such as contextual
meta-learning [16, 52] are readily extended using the ARM framework.

Some other meta-learning methods adapt using both labeled and unlabeled data, either in the semi
supervised learning setting [51, 70, 35] or the transductive learning setting [40, 1, 24]. These works do
not focus on the same setting of distribution shift and all assume access to labeled data for adaptation.
Prior works in meta-learning for unlabeled adaptation include Yu et al. [69], which adapts a policy
to imitate human demonstrations in the context of robotic learning, and Metz et al. [44], which
meta-learns an update rule for unsupervised representation learning, though they still require labels to
learn a predictive model. Unlike these prior works, the ARM framework facilitates the development
of meta-learning methods for quickly adapting a predictive model using unlabeled examples.

Adaptation to shift. Unlabeled adaptation has primarily been studied separately from meta-learning.
Domain adaptation is a prominent framework that assumes access to test examples at training
time, similar to transductive learning [65]. Some of these methods, such as importance weighting
approaches [60], only handle a single predefined shift and do not constitute test time adaptation [10,
68]. Certain domain adaptation methods, however, are applicable in the setting with training groups,
such as methods for learning invariant features [15, 33], and we compare to these methods in
Section 4. Several methods for adaptation at test time have been developed specifically for dealing
with label shift [54, 38, 62]. Other methods adapt using statistics of the test inputs [36] or optimize
self-supervised surrogate losses [63], and these methods have been shown to perform well across a
number of image classification domains. We also compare against these prior methods in Section 4.

3 Adaptive Risk Minimization

In this section, we first formally describe the ARM problem setting, which builds on the settings
used in prior work for tackling distribution shift. The novel aspect of the ARM setting is that it is
amenable to meta-learning solutions to shift, and we demonstrate this by proposing an objective for
the ARM setting that resembles typical meta-learning objectives. The problem setting and objective
together constitute the ARM problem formulation. We subsequently propose a general algorithm as
well as specific meta-learning approaches for solving the ARM problem.

3.1 The ARM problem setting

A key goal in machine learning is to develop methods that can go beyond the standard ERM setting
and generalize in the face of distribution shift. Accomplishing this goal necessitates the use of
additional assumptions beyond ERM, and we wish to carefully craft these assumptions such that they
fulfill two properties: they are realistic and applicable to real world problems, and they allow for
powerful and tractable methods. In this work, we choose two assumptions that are well established
in the literature on distribution shift, in order to fulfill the first property, and we develop a novel
meta-learning framework using these assumptions, thus fulfilling the second.

The first assumption is that the training data are provided in groups, which, as discussed above, mirrors
analogous assumptions made in group DRO [25], federated learning [43], and meta-learning [66],
among other settings. The second assumption is that we observe batches of test points all together,
rather than one point at a time. Assuming access to multiple test points has been standard in domain
adaptation [10, 68], which makes this assumption for training, as well as recent works studying
test time adaptation [36, 63, 67]. To our knowledge, these assumptions have not been considered
simultaneously in prior work. However, as we detail in this section, it is their conjunction that allows
us to develop meta-learning solutions to shift.

In the ARM problem setting, we assume access to a training dataset that consists of N labeled data
points (x(i), y(i), z(i)) sampled i.i.d. from the training distribution p. As noted, this differs from
standard supervised learning in that we additionally observe the group z(i) associated with each point,
which is a discrete value z 2 {1, . . . , S} that can represent tasks, users, or other types of meta-data.
The goal is to learn a model g(· ; ✓) : X ! Y that is parameterized by ✓ 2 ⇥ and predicts the output
y 2 Y given the input x 2 X . At test time, we are given batches of K unlabeled data points, where
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each batch is drawn from a distribution that may differ from both p and the other batch distributions,
and we do not observe either y or z. For example, we can imagine a test scenario that separately
considers each user’s images, as discussed in Section 1.

3.2 Deriving the ARM objective

We approach the goal of learning adaptable models through the lens of meta-learning. In particular,
we define an adaptation model as a function h(· , · ;�) : ⇥ ⇥ XK ! ⇥, which is parameterized
by �. h takes as input the model parameters ✓ and K unlabeled data points and produces updated
parameters ✓0 after adapting using the K points. h can be initialized as a variety of different adaptation
procedures, and we defer this discussion to subsection 3.3. Our goal is to meta-learn � and ✓ such that
h can adapt g using unlabeled training data sampled according to a particular group z. Assuming that
we will observe batches of data at test time that exhibit a similar type of shift, we can then perform
the same procedure for better test performance. This motivates the ARM objective, given by

min
✓,�

Epz

"
Epxy|z

"
1

K

KX

k=1

`(g(xk; ✓
0), yk)

##
, where ✓0 = h(✓,x1, . . . ,xK ;�) . (1)

A priori, we do not know what ptest(z) will be, i.e., which values of z will be seen at test time. Thus,
we draw inspiration from prior work in deep learning that demonstrates that uniformly sampling
over a quantity of interest, such as labels or groups, is a strong method for achieving robustness
with respect to that quantity [59, 6, 55]. We extend this approach to the ARM setting by defining
p(z) at training time to place uniform probability mass on each group in the training set, in order to
represent all training groups equally. Theoretically, we expect the trained models to perform well
at test time when the distribution over batches of data matches the training distribution. Note that
this is a looser condition than in ERM, as the distribution over individual data points can vary. In
practice, similar to how meta-learning for few shot classification has found that meta-learned models
can generalize to new meta-test classes [66, 14], we empirically show in Section 4 that the trained
models can generalize to new test groups.

Standard few shot meta-learning formulations must use disjoint data batches for adaptation and
meta-training to avoid label memorization [66]. Since labels are not used during adaptation in ARM,
we meta-train the adapted model using the same K examples that are used for adaptation. The
labels for these examples are used in the meta-training update but not the adaptation itself. Thus,
the adaptation matches the ARM setting at meta-test time, in which h adapts the model on the same
unlabeled test points that the adapted model then predicts on.

3.3 Optimizing the ARM objective Algorithm 1 Meta-Learning for ARM
// Training procedure
Require: # training steps T , batch size K, learning rate ⌘

1: Initialize: ✓,�
2: for t = 1, . . . , T do
3: Sample z uniformly from training groups
4: Sample (xk, yk) ⇠ p(· , · |z) for k = 1, . . . ,K

5: ✓0  h(✓,x1, . . . ,xK ;�)

6: (✓,�) (✓,�)� ⌘r(✓,�)

PK
k=1 `(g(xk; ✓

0), yk)

// Test time adaptation procedure
Require: ✓, �, test batch x1, . . . ,xK

7: ✓0  h(✓,x1, . . . ,xK ;�)

8: ŷk  g(xk; ✓
0) for k = 1, . . . ,K

Algorithm 1 presents a general meta-learning
approach for optimizing the ARM objective.
In line 5, h outputs updated parameters ✓0

using an unlabeled batch of data. We assume
that h is differentiable with respect to ✓ and �,
thus we can meta-train both ✓ and � for post

adaptation performance on a mini batch of
data sampled according to a particular group
z (line 6). This adaptation is performed us-
ing unlabeled data, mimicking the test time
procedure detailed in lines 7-8. In practice,
we sample mini batches of groups rather than
just one group (line 3), to provide a better
gradient signal for optimizing � and ✓.

Together, Equation 1 and Algorithm 1 specify how existing meta-learning approaches can be extended
to deal with group distribution shift. Most importantly, approaches in which the adaptation model h
can be augmented to operate on unlabeled data are readily applicable. We study two such approaches
for instantiating the model g and adaptation procedure h in Algorithm 1, which we summarize here
and provide full details for in Appendix A. First, we consider a contextual approach, shown in
Figure 2 (left), in which h summarizes the inputs x1, . . . ,xK into a context c, which is then used by
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Figure 2: Schematics of the two broad classes of approaches we consider. Left: In the contextual approach,
x1, . . . ,xK are summarized into a context c, and we propose two methods for this summarization, either through
a separate context network or using batch normalization activations in the model itself. c can then be used by the
model to infer additional information about the input distribution. Right: In the gradient based approach, an
unlabeled loss function L is used for gradient updates to the model parameters, in order to produce parameters
that are specialized to the test inputs and can produce more accurate predictions.

g as an additional input for predicting on each test point. In this setup, h can learn to provide useful
information about the entire batch of K unlabeled data points to g for predicting the correct outputs.
In the ARM setup, g is only ever evaluated after adaptation, i.e., with ✓0. We can view h as outputting
a concatenation of the model parameters and the context ✓0 = [✓, c].

This approach is inspired by recent works in contextual meta-learning with deep neural networks [16,
52]. In line with these works, we propose an ARM-CML implementation of this approach which
meta-learns a context network fcont(· ;�) : X ! RD. Note that fcont is parameterized by �, the
parameters of h, as in this method, h has no additional parameters. fcont processes each example xk

in the mini batch separately to produce ck 2 RD for k = 1, . . . ,K, where D is a hyperparameter.
The average c = 1

K

PK
k=1 ck is then used as the context.

Prior works outside of meta-learning have also investigated ways of conditioning predictions on a
batch of data. One prominent technique, assuming that the model g is parameterized by a deep neural
network with batch normalization layers [26], is to compute the normalization statistics for these
layers using batches of test inputs, rather than the standard test time procedure of using the running
statistics computed over the course of training. Several works have demonstrated the empirical
effectiveness of this simple strategy, e.g., Li et al. [36], Kaku et al. [29], Nado et al. [47], Schneider
et al. [58]. One advantage of this method’s simplicity is that it is easy to translate into the ARM
setting, in order to arrive at a meta-learning version of this method which we call ARM-BN. The
key difference is that, in ARM-BN, the model is trained to adapt using batches of training points
sampled from the same group, following Algorithm 1. We can interpret this method through the
contextual approach described above: if we view the running statistics used by standard BN as learned
parameters of the model, then h replaces these parameters with statistics computed on the batch of
inputs, which then serves as the context c. In ARM-BN, the model is meta-trained to make effective
use of this adaptation procedure, thus leading to more effective adaptation at test time. We provide
complete details on ARM-BN in Appendix A.

As shown in Figure 2 (right), a distinct approach draws inspiration from gradient based meta-learning,
where the goal is to learn parameters ✓ that are amenable to gradient updates on a loss function in order
to quickly adapt to a new problem [14]. In other words, h produces ✓0 = ✓ � ↵r✓L(✓,x1, . . . ,xK),
where ↵ is a hyperparameter. Note that the loss function L used in the gradient updates may be
different from the original supervised loss function `. In particular, in the setting of unlabeled
adaptation, L must be defined such that it operates on only the inputs x, rather than the input output
pairs that ` receives. Akin to Yu et al. [69], we propose a learned loss (ARM-LL) method that learns
to modulate the output features of the model g. In our implementation, we assume that g produces
output features o 2 R|Y| that are used as logits when making predictions. With this assumption,
we define L to be the composition of g and a loss network floss(· ;�) : R|Y| ! R, which takes in
the output features from g and produces a scalar. Note that, similar to the CML method, floss is
parameterized by �, as h has no additional parameters. The `2-norm of these scalars across the batch
of test inputs is used as the loss for updating the model parameter ✓. In other words,

L(✓,x1, . . . ,xK) = kvk2 , where v = [floss(g(x1; ✓);�), . . . , floss(g(xK ; ✓);�)] .
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Before adaptation, the output features o from g need not be suitable logits for prediction, as g is not
evaluated for predictive performance using the unadapted parameters ✓. Instead, o may represent, for
example, general features of the input x. These features can then be used by floss in order to provide
a gradient signal that adapts g to output accurate logits.

4 Experiments

Our experiments are designed to answer the following questions:
(1) Do methods for adaptive risk minimization learn models that can adapt to group shift?
(2) How do these methods compare to prior methods for robustness, invariance, and adaptation?
(3) Can we loosen the assumptions of accessing groups, at training time, and batches, at test time?

4.1 Evaluation domains and protocol

We evaluate on four image classification benchmarks, which span a range of problem settings
including federated learning and robustness, demonstrating the general applicability of the proposed
methods. Experimental details are provided in full in Appendix B.

Rotated MNIST. We study a modified version of MNIST where images are rotated in 10 degree
increments, from 0 to 130 degrees. We use only 108 training data points for each of the 2 smallest
groups (120 and 130 degrees), and 324 points each for rotations 90 to 110, whereas the overall
training set contains 32292 points. At test time, we generate images from the MNIST test set with a
certain rotation, and we consider each method’s worst case and average accuracy across groups.

Federated Extended MNIST (FEMNIST). The extended MNIST (EMNIST) dataset [9] consists
of images of handwritten letters and digits. FEMNIST [7] is a version of EMNIST that associates
each handwritten character with its user. We measure each method’s worst case and average accuracy
across 35 test users, which are held out and thus disjoint from the training users.

Corrupted image datasets. We also evaluate on modified versions of CIFAR-10-C and Tiny
ImageNet-C [20], which augment the CIFAR-10 [31] and Tiny ImageNet datasets, respectively, with
common image corruptions that vary in type and severity. We modify the protocol from Hendrycks
and Dietterich [20] to fit into the ARM problem setting by using a set of 56 corruptions for the
training data, and we define each corruption to be a group. We use a disjoint set of 22 corruptions for
the test data, and we measure worst case and average accuracy across the test corruptions.

4.2 Comparisons and ablations

We compare the ARM methods against several prior methods designed for robustness and adaptation.
We summarize the comparisons here and again provide additional details in Appendix B.

Group robustness and invariance. Sagawa et al. [55] recently proposed a state-of-the-art method
for group robustness, which we call distributionally robust neural networks (DRNN). Their work also
evaluates a strong upweighting (UW) baseline that samples uniformly from each group, and so we
also evaluate this approach in our experiments. Note that, for CIFAR-10-C and Tiny ImageNet-C, UW
is equivalent to ERM, as the groups all have an equal number of data points. Additionally, we compare
to domain adversarial neural networks (DANN) [15] and maximum mean discrepancy (MMD) feature
learning [33], two state-of-the-art methods for adversarial learning of invariant predictive features.

Test time adaptation. We evaluate the general approach of using test batches to compute batch
normalization (BN) statistics, which has been proposed in several prior works [36, 29, 47, 58]. We also
compare to test time training (TTT) [63], which adapts the model at test time using a self-supervised
rotation prediction loss. These methods have previously achieved strong results, even without
meta-learning, due to their favorable inductive biases for tasks such as image classification [63].

Robustness and invariance methods assume access to training groups but not test batches, whereas
adaptation methods assume the opposite. Thus, at a high level, we can view the comparisons to these
two broad classes of methods as evaluating the importance of each of these assumptions. We also
conduct experiments in subsection 4.4 in which we test ARM methods under looser assumptions.

Ablations. We also include ablations of the ARM-CML and ARM-LL methods, which sample
mini-batches of unlabeled examples uniformly from all groups, rather than sampling from a single
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MNIST FEMNIST CIFAR-10-C Tiny ImageNet-C
Method WC Avg WC Avg WC Avg WC Avg
ERM 74.3± 1.7 93.6± 0.4 62.9± 1.9 80.1± 0.9 49.6± 0.1 69.8± 0.4 19.3± 0.5 41.4± 0.2
UW⇤ 80.2± 0.1 94.8± 0.2 61.8± 0.9 80.1± 0.3 — — — —
DRNN 79.3± 1.1 94.8± 0.1 58.1± 0.7 74.4± 0.8 44.5± 0.5 70.7± 0.6 19.9± 0.3 41.6± 0.2
DANN 80.3± 1.4 95.1± 0.1 66.5± 0.4 82.3± 0.4 42.4± 0.2 69.1± 0.4 20.5± 0.1 41.9± 0.2
MMD 82.8± 2.0 95.6± 0.3 65.3± 1.6 81.6± 0.6 43.2± 0.4 70.4± 0.3 20.2± 0.0 39.9± 0.5
BN 75.1± 0.2 93.9± 0.1 66.9± 0.8 81.1± 0.3 62.5± 0.2 79.4± 0.3 23.9± 0.2 42.8± 0.2
TTT 81.1± 0.3 95.4± 0.1 64.1± 0.2 83.4± 0.1 66.6± 0.6 75.6± 0.8 19.7± 0.4 41.4± 0.3

CML ablation 78.2± 0.6 94.2± 0.1 64.4± 0.7 81.5± 0.7 47.8± 0.1 68.2± 0.1 19.6± 0.4 42.3± 0.2
LL ablation 82.4± 0.3 94.8± 0.2 61.9± 0.2 79.3± 0.6 61.5± 0.2 68.3± 0.5 25.8± 0.4 41.7± 0.1

ARM-CML 88.7± 0.6 96.7± 0.1 67.8± 1.3 85.7± 0.3 67.7± 0.5 79.2± 0.3 21.4± 0.2 43.3± 0.4
ARM-BN 82.8± 0.4 95.3± 0.1 72.6± 0.3 85.7± 0.1 71.1± 0.1 80.9± 0.2 27.7± 0.2 44.9± 0.2
ARM-LL 87.2± 0.5 96.3± 0.2 69.6± 2.1 85.6± 0.5 66.9± 0.2 75.7± 0.3 27.1± 0.3 44.2± 0.4

Table 1: Worst case (WC) and average (Avg) top 1 accuracy on rotated MNIST, FEMNIST, CIFAR-10-C, and
Tiny ImageNet-C across all methods, where means and standard errors are reported across three separate runs of
each method. ARM methods consistently achieve greater robustness, measured by WC, and Avg performance
compared to prior methods. ⇤The UW baseline is equivalent to ERM for CIFAR-10-C and Tiny ImageNet-C.

group to induce distribution shift. These “context ablation” and “learned loss ablation” are similar to
test time adaptation methods in that they do not assume access to training groups. However, these
methods lack the inductive bias of BN and TTT, as they instead use learned context and loss networks.
These ablations validate the importance of adapting to a specific group.

4.3 Quantitative evaluation and comparisons

In Table 1, we summarize the results. From these results, we highlight several key takeaways:

ARM methods consistently improve robustness and performance. Across all of our experiments,
ARM methods significantly increase both worst case and average accuracy compared to all other
methods. ARM-BN in particular achieves the best performance on most domains, demonstrating
the effectiveness of using meta-training to improve an already strong inductive bias that empirically
works well for image classification. ARM-CML and ARM-LL also generally improve upon the other
methods for almost all metrics, and we suspect that these more expressive methods could perform
better than ARM-BN for other modalities such as natural language and video [69].

Robustness methods suffer from pessimism and training difficulties. DRNN generally results
in worse average case and, surprisingly, worst case performance, which we hypothesize may be
due to optimization difficulties or overfitting to the training groups. In particular, methods such as
DRNN were originally evaluated in settings where the training and test groups were semantically
the same [55], whereas our FEMNIST setup tests on held out users and our CIFAR-10-C and Tiny
ImageNet-C setups test on held out corruptions. Indeed, for FEMNIST, we also test q-FedAvg [34], a
state-of-the-art method for fair federated learning. q-FedAvg was also originally evaluated with the
same users at training and test time, and in our setup, this method also performs poorly, achieving
58.2± 1.0 worst case and 80.8± 0.3 average accuracy.

We found that, in these experiments, DANN and MMD mostly outperform robustness methods,
though the overall performance of these methods for learning invariant features across groups is still
worse than ARM methods in general. Invariance methods have primarily been tested in settings with
an order of magnitude fewer source domains – usually 4 to 6, rather than tens or hundreds – and more
data per domain [18], and employing techniques such as an adversarial domain classifier may be less
effective in general as the number of domains increases.

With an appropriate inductive bias, test time adaptation methods perform well. In our evalu-
ation, one of the strongest prior methods is the simple BN method. This method performs well
across all metrics, though it typically still lags behind ARM methods and ARM-BN in particular. As
discussed above, we believe that this adaptation procedure performs well as it constitutes an inductive
bias that is well suited for image classification. TTT offers additional support for this hypothesis: this
method also works well across most metrics, in line with previous results on the original versions
of the corrupted image benchmarks [63], but works notably well for rotated MNIST. This may be
because the inductive bias associated with the auxiliary task of rotating images allows the classifier to
specifically be more robust to rotation shift.
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Figure 3: In the streaming setting, ARM methods reach strong performance on rotated MNIST (top) and Tiny
ImageNet-C (bottom), after fewer than 10 and 25 data points, respectively, despite meta-training with batch sizes
of 50 for both domains. This highlights the ability of the trained models to adapt with small test batches.

In summary, in our experiments, we observe poor performance from robustness methods, varying
performance from invariance and adaptation methods, and the strongest performance from ARM
methods. As ARM methods also make the strongest assumptions, we next present some findings on
how these assumptions may be loosened.

4.4 Loosening the training group and test batch assumption

We present an investigation of the feasibility and effectiveness of ARM methods without the training
group and test batch assumptions. Here, we consider a streaming test time setting, and in Appendix C,
we use unsupervised learning techniques to discover group structure in the training data.

When we cannot access a batch of test points all at once, we can augment the proposed ARM methods
to be sequential. For example, ARM-CML and ARM-BN can update their average context and
normalization statistics, respectively, after observing each new test point. In Figure 3, we visualize
the performance of both of these methods, using models that were meta-trained with batch sizes of
50. We see that both ARM-CML and ARM-BN are able to achieve near their original worst case and
average accuracy within observing 10 data points, for rotated MNIST, and 25 data points, for Tiny
ImageNet-C, well before the training batch size of 50. We describe in detail how each ARM method
can be applied to the streaming setting in Appendix A.

5 Discussion and Future Work

We presented adaptive risk minimization (ARM), a problem formulation for learning models that
can robustly adapt in the face of group distribution shift at test time using only a batch of unlabeled
test examples. We devised an algorithm and a set of methods for optimizing the ARM objective
that meta-learns models that are adaptable to different distributions of training data. Empirically, we
observed that ARM methods consistently improve performance in terms of both average and worst
case metrics, as compared to a number of prior approaches for handling shift. Two exciting directions
for future work are to further explore the unknown groups setting, potentially drawing inspiration
from Hsu et al. [23] as discussed, and to develop more sophisticated ARM approaches.
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