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Abstract

Transporting suspended payloads is challenging for autonomous aerial vehicles
because the payload can cause significant and unpredictable changes to the robot’s
dynamics. These changes can lead to suboptimal flight performance or even catas-
trophic failure. Although adaptive control and learning-based methods can in
principle adapt to changes in these hybrid robot-payload systems, rapid mid-flight
adaptation to payloads that have a priori unknown physical properties remains an
open problem. We propose a meta-learning approach that learns how to adapt
models of altered dynamics within seconds after picking up or dropping a pay-
load. Our experiments demonstrate that our approach outperforms non-adaptive
methods on several challenging suspended payload transportation tasks. Videos
available at: sites.google.com/view/meta-rl-for-flight

a b c d e
Figure 1: Our meta-reinforcement learning method controlling a quadcopter transporting a suspended payload.
This task is challenging since each payload induces different system dynamics, which requires the quadcopter
controller to adapt online. The controller learned via our meta-learning approach can (a) fly towards the pay-
load, (b) attach the cable tether to the payload using a magnet, (c) take off, (d) fly towards the goal location while
adapting to the newly attached payload, and (e) deposit the payload using an external detaching mechanism.

1 Introduction

System identification is a powerful tool to control well-characterized robotic systems, such as quad-
copters, in the absence of any physical interaction with the environment. While characterizing the
dynamics of an isolated robotic system only needs to be done once per robot, characterizing the
physical properties of every possible object in advance is infeasible in open-world environments.
Unfortunately, it is precisely physical interactions with movable objects that constitute the primary
modality by which robots influence the world around them, and therefore for a robotic system to
affect its environment, it must be able to operate given unknown and unpredictable environmental
conditions, object properties, and other physical phenomena.

In this work, we specifically investigate how to enable a quadcopter to control a suspended payload,
in which the quadcopter must position itself to pick up the desired payload with its suspended cable,
and transport the payload along a desired path to a goal destination. An example illustration of
such a suspended payload control task is shown in Fig. 1. Although this task is challenging for
many reasons—including nonlinear stochastic dynamics—one of the biggest challenges stems from
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the variability in dynamics induced by different payloads. For example, a payload attached with a
shorter cable will oscillate faster compared to one attached with a longer cable. Because the robot
will be picking up and dropping off different a priori unknown payloads, the robot must adapt to the
new dynamics quickly to avoid instabilities in order to successfully control the payload.

To address these challenges, we present a meta-learning system for quadcopter control with sus-
pended payloads. Our algorithm can be viewed as a model-based meta-reinforcement learning
method: we learn a predictive dynamics model, represented by a deep neural network, which is
augmented with stochastic latent variables that represent the unknown factors of variation in the en-
vironment and task. The model is trained with different payload masses and tether lengths, and uses
variational inference to estimate the corresponding posterior distribution over these latent variables.
This training procedure enables the model to adapt to new payloads at test-time by inferring the
posterior distribution over the latent variables.

We demonstrate in our experiments that our method enables a quadcopter to plan and execute tra-
jectories that follow desired payload trajectories, drop off these payloads at designated locations,
and even pick up new payloads with a magnetic gripper. To our knowledge, this is the first meta-
learning approach demonstrated on a real-world quadcopter using only real-world training data that
successfully shows improvement in closed-loop performance compared to non-adaptive methods for
suspended payload transportation.

2 Related Work

Prior work on control for aerial vehicles has demonstrated impressive performance and agility in
navigating between small openings [19], aerobatics [17], and obstacle avoidance [25]. These ap-
proaches have also enabled aerial vehicles to aggressively control suspended payloads [29, 30].
These methods typically rely on manual system identification, where an expert derives equations
of motion and any physical parameters are estimated for both the aerial vehicle [18, 33] and the
suspended payload [29, 30]. Although these approaches have successfully enabled controlled flight
of the hybrid system, they require a priori knowledge of the system [7]. When such parameters
cannot be identified in advance, alternative techniques are required.

Many approaches overcome the limitations of manual system identification by performing auto-
mated system identification, in which certain parameters are adapted online according to a specified
error metric [28, 12]. However, the principal drawback of manual system identification—the re-
liance on domain knowledge for the equations of motion—still remains. While certain rigid-body
robotic systems are easily identified, more complex phenomena, such as friction, contacts, deforma-
tions, and turbulence, may have no known analytic equations. In such cases, data-driven approaches
that automatically model a system’s dynamics from data can be advantageous.

Prior work has also proposed end-to-end learning-based approaches that learn from raw data, such
as value-based methods which estimate cumulative rewards [31] or policy gradient methods that
directly learn a control policy [32]. Although these model-free approaches have been used to learn
policies for various tasks [20, 27], including for robots [14], the learning process generally takes
hours or even days, making it poorly suited for safety-critical and resource-constrained quadcopters.

Model-based reinforcement learning (MBRL) can provide better sample efficiency, while retain-
ing the benefits of end-to-end learning [5, 9, 21, 4]. With these methods, a dynamics model is
learned from data and then used by either a model-based controller or to train a control policy. Al-
though MBRL has successfully learned to control complex systems such as quadcopters [1, 16],
most MBRL methods are designed to model a single task with unchanging dynamics, and therefore
do not adapt to rapid online changes in the dynamics of a system.

One approach to enable rapid adaptation to time-varying dynamical systems is meta-learning, which
is a framework for learning how to learn that typically involves fine-tuning of a model’s parameters
[8, 11, 22] or input variables [24, 26]. There has been prior work on model-based meta-learning for
quadcopters. O’Connell et al. [23] used the MAML [8] algorithm for adapting a drone’s internal
dynamics model in the presence of wind. Although they demonstrated the meta-learning algorithm
improved the model’s accuracy, the resulting adapted model did not improve the performance of
the closed-loop controller. In contrast, we demonstrate that our meta-learning approach does im-
prove performance of the model-based controller. Nagabandi et al. [22] also explored meta-learning
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for online adaptation in MBRL for a legged robot, demonstrating improved closed-loop controller
performance with the adapted model. Our work focuses on suspended payload manipulation with
quadcopters, which presents an especially prominent challenge due to the need for rapid adaptation
in order to cope with sudden dynamics changes when picking up payloads.

3 Preliminaries

We first introduce our notation, problem formulation, and preliminaries on model-based reinforce-
ment learning (MBRL) that our meta-learning algorithm builds upon. Conventionally, a control
problem can be represented as a Markov decision process, with state s ∈ Rds , action a ∈ Rda , and
discrete time steps t. The state evolves each time step according to an unknown stochastic function
st+1 ∼ p(st+1|st,at). We consider K tasks {T1., ..., TK}. In each task, the robot’s objective is
to execute actions that maximize the expected sum of future rewards r(st,at) ∈ R over the task’s
finite time horizon T .

We approach this problem using the framework of model-based reinforcement learning, which
learns the underlying dynamics from data, with minimal prior knowledge of the system. We can
train a dynamics model pθ(st+1|st,at) with parameters θ by collecting data in the real world,
which we can view as sampling “ground truth” tuples (st,at, st+1). Given a dataset Dtrain =
{(s0,a0, s1), (s1,a1, s2), ...}, the parameters θ∗ can be learned with maximum likelihood:

θ∗ = argmax
θ

p(Dtrain|θ) = argmax
θ

∑

(st,at,st+1)∈Dtrain

log pθ(st+1|st,at). (1)

The specific model-based RL method we build on is the PETS algorithm [4], which has previously
been shown to handle expressive neural network dynamics models and attain good sample efficiency
and performance. PETS uses an ensemble of neural network models, each parameterizing a Gaus-
sian distribution on st+1 conditioned on both st and at. The learned dynamics model is used to plan
and execute actions via model predictive control (MPC) [10, 15, 21]. MPC uses the dynamics model
to predict into the future, and selects the action sequence that has the highest predicted reward:

a∗t =argmax
at

[
max

at+1:t+H

t+H∑

τ=t

Esτ∼pθ [r(sτ ,aτ )]

]
, (2)

where sτ is recursively sampled from the model:
sτ+1 ∼ pθ(sτ+1|sτ ,aτ ), initialized at sτ ← st.
Once this optimization is solved, only the first ac-
tion a∗t is executed. A summary of this method is
provided in Algorithm 1, and we refer the reader
to Chua et al. [4] for additional details.

Algorithm 1 Model-Based RL (PETS)
1: Initialize dynamics model pθ with random pa-

rameters θ
2: while not done do
3: Get current state st
4: Decide action a∗

t given pθ∗ and st " see (2)
5: Execute action a∗

t

6: Record: Dtrain ← Dtrain ∪ {st,a∗
t , st+1}

7: Train dynamics model pθ with Dtrain" see (1)
8: end while

4 Model-Based Meta-Learning for Quadcopter Payload Transport

Our goal is to enable a quadcopter to pick up and transport payloads with a priori unknown prop-
erties. We formulate this problem as a visual servoing task: a fixed camera localizes the payload
in image space, and the user specifies a desired flight trajectory, also in image space. The state s
corresponds only to the location and size of the payload in the image.

The primary challenge is that this interaction is difficult to model a priori because each suspended
payload has different physical properties. Although prior work on MBRL has been able to learn to
control complex systems, MBRL is unable to account for factors of variation that are not accounted
for in the state s, such as the unknown properties of the payload. We therefore approach this problem
through the lens of meta-learning, in which we learn a model that is explicitly trained to adapt online.

The quadcopter’s objective is to pick up and transport a suspended payload along a specified trajec-
tory (Fig. 1). First, the quadcopter must fly to the location of the payload (Fig. 1a), attach itself to
the payload using a suspended cable (Fig. 1b), and then lift the payload off the ground (Fig. 1c).
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Figure 2: System diagram of our meta-learning for model-based reinforcement learning algorithm. In the train-
ing phase, we first gather data by manually piloting the quadcopter along random trajectories with K different
payloads, and saving the data into a single dataset Dtrain consisting of K separate training task-specific datasets
Dtrain .

= Dtrain
1:K . We then run meta-training to learn the shared dynamics model parameters θ and the adaptation

parameters φ1:K for each payload task. At test time, using the learned dynamics model parameters θ∗, the
robot infers the optimal latent variable φ∗ online using all of the data Dtest from the current task. The dynamics
model, parameterized by θ∗ and φ∗, is used by a model-predictive controller (MPC) to plan and execute actions
that follow the specified path. As the robot flies, it continues to store data, infer the optimal latent variable
parameters, and perform planning in a continuous loop until the task is complete.

Finally, the quadcopter attempts to reach the goal destination and releases the payload (Fig. 1e). The
quadcopter is then able to continue transporting other payloads in a similar manner. Each payload
transition can alter the dynamics drastically.
4.1 Data Collection

We first collect data by manually piloting the quadcopter (Fig. 2, left) along random paths for each
of the K different suspended payloads. We save all the data into a single dataset Dtrain, consisting
of K separate datasets Dtrain .

= Dtrain
1:K

.
= {Dtrain

1 , ...,Dtrain
K }, one per payload task. The quadcopter

we use is the DJI Tello (Fig. 1). The Tello is ideal for rapid experimentation for suspended payload
control thanks to its small 98mm× 93mm× 41mm size, light 80 g weight, long 13 minute battery
life, and powerful motors. During different tasks, 3D printed payloads weighing between 10 and 15
grams are attached to the Tello via strings between 18 and 30 centimeters long.

During data collection, we record the controls (Cartesian velocity commands a ∈ R3) and the
payload location (pixel location and size of the payload in image space, s ∈ R3), which we track
with an externally mounted RGB camera using OpenCV [3]. Observed states are stored every 0.25
seconds into Dtrain. To model how past states and actions affect the future trajectory of the payload,
we modify the state to include the past 8 states and actions, resulting in the state having dimension
s ∈ R48. The final dataset Dtrain consisted of approximately 16,000 data points (1.1 hours of flight),
which were then used by our meta-learning for model-based reinforcement learning algorithm.

4.2 Model Training with Known Dynamics Variables

As a warmup, we first discuss the case where we know all the “factors of variation” in the dynamics
across tasks, represented explicitly as a “dynamics variable” zk ∈ Rdz that is known at training
time, but unknown at test-time. For example, we might know that the source of variation is the tether
length L, and therefore we would specify zk←Lk ∀ k at training time. In §4.3, we will address the
case where these factors of variation are completely unknown. With known zk, we can learn a single
dynamics model pθ across all tasks by using zk as an auxiliary input: st+1 ∼ pθ(st+1|st,at, zk).
Having zk as an auxiliary input is necessary for accurate modelling because the factors of variation
that affect the payload’s dynamics, such as the tether length, are not present in the state s. Training
is therefore analogous to (1), but with an additional conditioning on z1:K

.
= [z1, ..., zK ]:

θ∗
.
= argmax

θ
log p(Dtrain|z1:K , θ) = argmax

θ

K∑

k=1

∑

(st,at,st+1)∈Dtrain
k

log pθ(st+1|st,at, zk) . (3)

The variables in this training process are summarized in the graphical model shown in Fig. 3a, in
which every variable is observed except for the “true” model parameters θ, which we infer approxi-
mately as θ∗ using maximum likelihood estimation in (3).
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(a) Training-time with known payload properties zk.
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(b) Training-time with unknown payload prop. zk.
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(c) Test-time with unknown payload properties ztest.

Figure 3: Graphical models of the drone-payload
system dynamics. At each time step t, the system
evolves as a function—parameterized by θ—of the
current state st, action at, and the k’th payload’s id-
iosyncrasies (modelled as zk). Shaded nodes are ob-
served. At training time, the payload might be known
(Fig. 3a) or unknown (Fig. 3b). Either way, test-time
ztest is always unknown (Fig. 3c), and inferred given
the trained dynamics model parameters θ∗.

Algorithm 2 Model-Based Meta RL for Quad-
copter Payload Transport
1: // Training Phase
2: for Task k = 1 to K do
3: for Time t = 0 to T do
4: Get action at from human pilot
5: Execute action at

6: if zk is known then " case §4.2
7: Record: Dtrain←Dtrain∪{st,at,st+1,zk}
8: else " case §4.3
9: Record: Dtrain ← Dtrain ∪ {st,at, st+1}

10: end if
11: end for
12: end for
13: Train dynamics model pθ∗ with Dtrain " see (5)
14:
15: // Test Phase
16: Initialize φ∗ ← {µtest = 0,Σtest = I}
17: for Time t = 0 to T do
18: Decide action a∗

t given pθ∗ , qφ∗ " see (2)
19: Execute action a∗

t

20: Record: Dtest ← Dtest ∪ {st,a∗
t , st+1}

21: Infer payload params φ∗ given Dtest " see (6)
22: end for

4.3 Meta-Training with Latent Dynamics Variables

The formulation in §4.2 requires knowing the dynamics variables z1:K at training time. This is a
significant assumption, because not only does it require domain knowledge to identify all possible
factors of variation, but also that we can measure each factor at training time. To remove this
assumption, we now present a more general training procedure that infers the dynamics variables
z1:K and the model parameters θ jointly, as shown by Fig. 3b, without needing the semantics or
values of z1:K . We begin by placing a prior over z1:K ∼ p(z1:K) = N (0, I), and then jointly
infer the posterior p(θ, z1:K |Dtrain

1:K). We refer to this as meta-training, summarized graphically in
Fig. 3b and shown in the broader algorithm flow diagram in Fig. 2 (center). Unfortunately, inferring
p(θ, z1:K |Dtrain

1:K) exactly is computationally intractable. We therefore approximate this distribution
with an approximate—but tractable—variational posterior [13], which we choose to be a Gaussian
with diagonal covariance, factored over tasks, qφk(zk) = N (µk,Σk) ≈ p(zk|Dtrain) ∀ k ∈ [K], and
parameterized by φk

.
= {µK ,Σk}. Our meta-learning training objective is to again maximize the

likelihood of the full dataset Dtrain = Dtrain
1:K , analogous to Equation (3). The only difference to §4.2

is that we must (approximately) marginalize out z1:K because it is unknown:

log p(Dtrain|θ) = log

∫

z1:K

p(Dtrain|z1:K , θ)p(z1:K)dz1:K =
K∑

k=1

logEzk∼qφk
p(Dtrain|zk, θ) ·

p(zk)

qφk(zk)

≥
K∑

k=1

Ezk∼qφk




∑

(st,at,st+1)∈Dtrain
k

log pθ(st+1|st,at, zk)



−KL(qφk(zk)||p(zk))
.
= ELBO(Dtrain|θ,φ1:K).

(4)

This is the evidence lower bound (ELBO), which is a computationally tractable approximate to
log p(Dtrain|θ). For additional details on variational inference, we refer the reader to Bishop [2]. Our
meta-training algorithm then optimizes both θ and the variational parameters φ1:K of each task with
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respect to the evidence lower bound:

θ∗
.
= argmax

θ
max
φ1:K

ELBO(Dtrain|θ,φ1:K). (5)

4.4 Test-Time Task Inference
At test time, the robot must adapt online to the new task—such as a new payload—by inferring
the unknown dynamics variables ztest in order to improve the learned dynamics model pθ∗ and the
resulting MPC planner. Inference is performed by accumulating transitions (st,at, st+1) into Dtest,
and using this data and the meta-trained model parameters θ∗ to infer the current value of ztest in
real time, as seen in the right side of Fig. 2. A summary of the variables in the inference task is
given by Fig. 3c. Similarly to §4.3, exact inference is intractable, and we therefore use a variational
approximation for ztest: qφtest(ztest) = N (µtest,Σtest) ≈ p(ztest|Dtest), parameterized by φtest .

=
{µtest,Σtest}. Regardless of training regime (§4.2 or §4.3), inferring ztest uses the same procedure
outline below. To infer the relevant effects that our test-time payload is having on our system, we
again use variational inference to optimize φtest such that the approximate distribution qφtest(ztest) is
close to the true distribution p(ztest|Dtest), measured by the Kullback-Leibler divergence:

φ∗ .
= argmaxφ − KL(qφ(ztest)||p(ztest|Dtest, θ∗)) = argmax

φ
ELBO(Dtest|θ∗,φ), (6)

with proof in appendix, equation (7). Note the objective (6) corresponds to the test-time ELBO of
Dtest, analogous to training-time ELBO of Dtrain (4). Thus (6) scores how well φ describes the new
data Dtest, under our variational constraint that q is assumed to be Gaussian. Since θ∗ was already
inferred at training time, we treat it as a constant during this test-time optimization. Equation (6) is
tractable to optimize, and therefore at test time we perform gradient descent online in order to learn
φtest and therefore improve the predictions of our learned dynamics model.

4.5 Method Summary
A summary of the full training procedure and test-time visual servoing evaluation is provided in both
Fig. 2 and Algorithm 2. During the training phase, dataset Dtrain is gathered for K tasks consisting
of tuples {st,at, st+1}, as well as the dynamics variable zk if it is known (§4.2). We then train
the dynamics model pθ∗ using the dataset Dtrain via (5). At test time, we initialize qφtest(ztest) to be
the prior N (0, I) and the quadcopter begins to transport payloads with a priori unknown dynamics
ztest. At each time step, we solve for the optimal action a∗t given pθ∗ and the current estimate of ztest

using MPC. The quadcopter executes this action and records the transition {st,a∗t , st+1} in the test
dataset Dtest. We then adapt the latent variable by inferring qφ∗(ztest) using Dtest. The quadcopter
continues to plan, execute, and adapt online until the payload transportation task is complete.

5 Experimental Evaluation
We now present an experimental evaluation of our meta-learning approach in the context of quad-
copter suspended payload control tasks. The experiments are best seen in the accompanying video 1,
which also include additional evaluations.

We evaluated our meta-learning approach with both known variables (§4.2) and latent variables
(§4.3), and compared to the three following approaches. MBRL without history has state consisting
of only the current payload pixel location and size. MBRL with history, a baseline meta-learning
approach that concatenates past eight states and actions together as input to the dynamics model.
While concatenating past states often helps with non-Markovian dynamics [16], prior methods also
use histories of recent states to understand changes in the dynamics function, using either an RNN [6,
22] or a MAML-based method [22]. Lastly, PID controller uses three PID controllers, one for each
Cartesian velocity command axis. We manually tuned the PID gains based on the performance of
the controller on a trajectory not used in our experiments for a single payload.

In our experiments, we aim to answer the following questions. Q1: Does online adaptation via
meta-learning lead to better performance compared to non-adaptive methods? Q2: How does our
meta-learning approach compare to MBRL? Q3: Can we generalize to payloads that were not seen
at training time? Q4: Is our test-time inference procedure able to differentiate between different a

1sites.google.com/view/meta-rl-for-flight
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priori unknown payloads? Q5: Can our approach enable a quadcopter to fulfill a complete payload
pick-up, transport, and drop-off task, as well as other realistic payload transportation scenarios?

Ours (Unknown)Ours (Known) MBRL

C
irc

le
Sq

ua
re

Fi
gu

re
-8

Figure 4: Comparison of our meta-learning approach
with unknown and known factors of variation versus
model-based reinforcement learning (MBRL) with past
states and actions concatenated. The tasks are to either
follow a circle or square in the image plane, or a figure-
8 parallel to the ground. The specified goal paths are
colored in red and the path taken by each approach is
shown in cyan. Our approaches are better able to adapt
online and follow the specified trajectories.

Trajectory Following We first evaluate the
ability of our method to track specified payload
trajectories in isolation, separately from the full
transportation task. Each task consists of fol-
lowing either a circle or square path (Fig. 4)
in the image plane or a figure-8 path paral-
lel to the ground, and with a suspended cable
length either 18cm or 30cm long. Although the
training data included payloads with these ca-
ble lengths, the cable length was unknown to
all methods during these test-time experiments.

Table 1 shows the results for each approach in
terms of average pixel tracking error, with visu-
alizations of a subset of the executions shown in
Fig. 4. Both the online adaptation methods—
our approach and MBRL—better track the
specified goal trajectories compared to the non-
adaptation methods—MBRL without history
and PID controller—which shows that online
adaptation leads to better performance (Q1).
Our meta-learning approach also outperforms
MBRL (Q2). Our approach meta-trained with
unknown latent dynamics variables also performs similarly to our approach trained with known
dynamics models, which highlights that our approach does not require a priori knowledge of the
payloads during training to successfully adapt at test time. It can also generalize to latent variables
not seen during training (Q3), rapidly adapting to string lengths of 21cm or 27cm, shown in Table 2.

Fig. 5 and Fig. 7 (appendix) show that the dynamics variable converges to different values depending
on the cable length, which shows that the test-time inference procedure can differentiate between
different payload dynamics (Q4). More importantly, as the inferred value converges, our learned
model-based controller becomes more accurate and is therefore better able to track the desired path
(Q1).

Table 1: Comparative evaluation for the tasks of following a circle, square or figure-8 trajectory with either an
18cm or 30cm payload cable length. Table entries specify the average pixel tracking error over 5 trials, with∞
denoting when all trials failed the task by deviating outside of the camera field of view. Note the cable length
was not given to any method a priori, and therefore online adaptation was required in order to successfully
track the specified path. Our method was able to most closely track all specified paths for all payloads.

Algorithm
Avg. Tracking Error (pixels) for each Task Path and Payload String Length (cm)
Circle Square Figure-8

18cm 30cm 18cm 30cm 18cm 30cm
Ours (unknown variable) 23.6±2.7 24.4±3.9 23.9±2.8 26.6±3.8 24.7±1.3 29.1±6.0
Ours (known variable) 31.8±6.5 30.5±2.7 26.3±3.6 31.7±4.7 29.8±2.8 28.3±3.8
MBRL without history ∞ ∞ ∞ ∞ ∞ ∞
MBRL 40.0±4.4 42.4±2.8 32.4±2.4 39.3±5.2 34.2±1.9 41.0±7.3
PID controller 70.6±4.0 68.0±2.5 65.8±10.0 69.5±6.9 90.2±10.4 86.4±9.3

Table 2: Generalization results. Training data comprises only 18cm, 24cm, and 30cm cable lengths. At test-
time, we use 21cm and 27cm cables, to test the model’s ability to interpolate between familiar cable lengths.

Algorithm
Avg. Tracking Error (pixels) for each Task Path and Payload String Length (cm)
Circle Square Figure-8

21cm 27cm 21cm 27cm 21cm 27cm
Ours (3 unknown variables) 16.8±1.3 21.7±2.1 24.1±2.4 24.3±1.4 36.2±2.5 40.1±3.8
MBRL 21.1±4.7 25.9±1.6 28.3±2.5 37.0±2.6 43.8±3.7 41.9±3.9
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Known latents Unknown latents Known latents Unknown latents
String l = 18cm String l = 18cm String l = 30cm String l = 30cm

Figure 5: Visualization of the inferred latent variable and tracking error over time for the task of following a
figure-8 trajectory. For all approaches, the inferred latent variable converges as the quadcopter flies and adapts
online. The converged final latent values are different depending on the cable length, which shows the online
adaptation mechanism is able to automatically differentiate between the different payloads. Furthermore, as the
latent value converges, the tracking error also reduces, which demonstrates that there is a correlation between
inferring the correct latent variable and the achieved task performance.

End-to-End Payload Transportation We also evaluated our approach on a full end-to-end pay-
load transportation task (Fig. 6), in which the quadcopter must follow a desired trajectory to the
payload, attach to the payload using a magnet, lift the payload and transport it along a specified
trajectory to the goal location, drop off the payload, and then follow a trajectory back to the start
location. Our approach successfully completes the full task (Q5) due to our online adaptation mech-
anism (Q1), enabling the drone to better track the specified trajectories and pick up the payload by
automatically inferring whether the payload is attached or detached (Q4). Furthermore, the con-
tinuous aspect of this demonstration highlights the importance of online adaptation: each time the
quadcopter transitions between transporting a payload and not transporting a payload, the quad-
copter must re-adapt online to be able to successfully follow the specified trajectories. Additional
tasks, including navigating around an obstacle (Fig. 8), greedily following a target (Fig. 9), and
following trajectories dictated using a “wand”-like interface (Fig. 10), are available in the appendix.

6 Conclusion
We presented a meta-learning approach for model-based reinforcement learning that enables a quad-
copter to adapt to various payloads in an online fashion. At the core of our approach is a deep neural
network dynamics model that learns to predict how the quadcopter’s actions affect the flight path of
the payload to effectively visual servo. We augment this dynamics model with latent variables, which
represent unknown factors of variation in the payload. These latent variables are inferred online to
improve predictive accuracy amenable for fast online adaptation. Our experiments demonstrate that
the proposed training and online adaptation mechanisms improve performance for real-world quad-
copter suspended payload transportation tasks compared to other adaptation approaches.

Figure 6: Our approach successfully completing the full quadcopter payload transportation task consisting
of three phases: before the quadcopter picks up the payload, during quadcopter transit of the payload to the
goal, and after the payload is dropped off. Our approach continuously infers the latent dynamics variable
online using the current test-time dataset, and flushes the test-time dataset each time the quadcopter transitions
between phases (shown by vertical black lines). The inferred latent variable is the same for when no payload
is attached, but changes when the payload is attached, demonstrating that our inference procedure successfully
infers the latent variable depending on the payload. Within each phase, the tracking error also reduces over
time, which shows that our online adaptation mechanism improves closed-loop performance.
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