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Abstract

Few-shot learning ability is heavily desired for machine intelligence. By meta-
learning a model initialization from training tasks with fast adaptation ability to new
tasks, model-agnostic meta-learning (MAML) has achieved remarkable success in
a number of few-shot learning applications. However, theoretical understandings
on the learning ability of MAML remain absent yet, hindering developing new and
more advanced meta learning methods in a principle way. In this work, we solve
this problem by theoretically justifying the fast adaptation capability of MAML
when applied to new tasks. Specifically, we prove that the learnt meta-initialization
can quickly adapt to new tasks with only a few steps of gradient descent. This result,
for the first time, explicitly reveals the benefits of the unique designs in MAML.
Then we propose a theory-inspired task similarity aware MAML which clusters
tasks into multiple groups according to the estimated optimal model parameters
and learns group-specific initializations. The proposed method improves upon
MAML by speeding up the adaptation and giving stronger few-shot learning ability.
Experimental results on the few-shot classification tasks testify its advantages.

1 Introduction

Meta learning [1, 2, 3, 4], a.k.a. learning-to-learn [5], offers a new way to solve few-shot learning
tasks via learning task-level knowledge. Specifically, at task level it trains a meta learner to extract
task-shared knowledge from all the training tasks; then the meta learner is used to facilitate a task-
specific model to learn a new task with only a small amount of data [6, 7, 8, 9, 10]. Among existing
meta learning methods, model-agnostic meta-learning (MAML) [7] is a representative one because of
its simplicity, generality and state-of-the-art performance [10, 11, 12]. It aims to learn a meta model
from the observed tasks that could serve as a good initialization for task-specific models. Then given
a test task, it only applies a few gradient descent steps on a few training samples for adapting the
meta model to the test task, since the learnt initial model is desired to be close to the optimal models
of the observed tasks and thus can be quickly adapted to new similar tasks.

Despite its remarkable success in practice [7, 13, 12], the theoretical understanding of MAML is
still largely absent. Specifically, it is not clear why MAML is able to generalize well in new tasks via
merely taking a few steps of gradient descent on a small amount of data. The answer to this question
is important not only for justifying the fast adaptation capability of MAML, but also for inspiring
new insights for algorithm improvement.

Contributions. In this work, we address the above fundamental question and contribute to derive
some new results, insights and alternatives for MAML. Particularly, we provide rigorous theoretical
analysis for its generalization behaviors. Inspired by our theory, we then propose a new alternative of
MAML which is more effective for few-shot learning. Our main contributions are highlighted below.

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.



CUB Bird
FGVCx Fungi
FGVC Aircraft

CUB Bird
FGVCx Fungi
FGVC Aircraft
Initialization

CUB Bird
FGVCx Fungi
FGVC Aircraft
Initialization 1
Initialization 2
Initialization 3

(a) (b) (c)

Figure 1: Illustration of the learnt group structures by MAML and TSA-MAML on 5-shot 5-way
learning task of a group-structured dataset with three sub-datasets, i.e. Aircraft [16], CUB Birds [17]
and FGVCx Fungi [18]. One can observe indistinguishable sample features of tasks in (a) but well
group-structured optimal model parameters of tasks learnt by MAML and TSA-MAML via 10
gradient descent steps from learnt initializations in (b) and (c) respectively. See details in Sec. 5.1.

Our first contribution is proving that in MAML, applying a few gradient descent steps on a
small training dataset of a new task can achieve satisfactory generalization performance [14, 15]
on its test data. Specifically, let θ∗ be the initialization learnt by MAML with meta model
f(θ,x) on the training tasks which are drawn from a task distribution T . For a task T , let
LDT

(θ) = 1
K

∑
(x,y)∈DT

`(f(θ,x),y) denote its empirical risk on its training dataset DT of
size K. Then for any test task T ∼ T , we prove that its task-specific adapted parameter
θqT = θ∗−α

[
∇LDT

(θ∗)+
∑q−1
t=1∇LDT

(θtT )
]

obtained by taking q gradient descent steps on its
training data DT has good performance on its test data (x,y) ∼ T , where θ1T =θ∗−α∇LDT

(θ∗).
Specifically, by defining population risk L(θ) = E(x,y)∼T `(f(θ,x),y) on task T , we show the
excess risk ET∼T EDT

[L(θqT )− L(θ∗T )] of θqT , well measuring the testing performance, is upper
bounded by O

(
ρq

K +ET∼T EDT

[
LDT

(θqT )− L(θ∗T )
]
), where the constant ρ is slightly larger than

one, and θ∗T is the optimum of population risk L(θ) on T . This result explicitly reveals the importance
of the gradient step number q in MAML. Indeed, it suggests us to adapt the learnt initialization θ∗ to
new task via a few gradient descent steps. See details in Sec. 3.2. Besides, we further upper bound
ET∼T EDT

[
LDT

(θqT )− L(θ∗T )
]

by 1
2αET∼T

[
‖θ∗ − θ∗T ‖22

]
, showing the smaller distance between

θ∗ and θ∗T the smaller the excess risk. Meanwhile, as the learnt initialization θ∗ by MAML is often
close to θ∗T , our results can explain why MAML generalizes well to new tasks.

Inspired by our theory, we further develop the task similarity aware MAML (TSA-MAML) as a
novel alternative to achieve faster adaptation to new tasks. As shown in Fig. 1 (a) and (b), though
the samples in tasks are undistinguishable, the optimal model parameters estimated by MAML have
remarkable group structures. So instead of learning one initialization for all tasks, TSA-MAML
leverages task similarity to discover the group structures in the tasks by using a learner A to measure
task similarity in terms of the estimated task-specific model parameters. Then to facilitate the
learning of new tasks, it learns multiple model initializations each of which corresponds to a group
of similar tasks. Specifically, given a training task, TSA-MAML first uses the learner A to predict
its group membership and assign a group-specific initialization to it for few-shot training. Next, the
initializations are in turn improved and become more group-specific. Consequently, as shown in Fig. 1
(c), the optimal model parameters of tasks in the same group are much closer to the group-specific
initialization learnt by TSA-MAML than one common initialization learnt for all tasks by MAML.
So TSA-MAML can adapt to new tasks more quickly and better under the few-shot learning setting.
In this work, we implement the learner A as the vanilla MAML and measure the task similarity
according to the Euclidean distance between task-specific model parameters. We also theoretically
show the superiority of TSA-MAML over MAML on learning new tasks. Extensive experimental
results also well demonstrate the advantages of our approach on the few-shot learning problems.

2 Related Work

Meta learning has gained much attention recently because of its success in many applications [4, 7, 13,
19, 20, 21, 22]. The current methods can be divided as metric-based family [23, 9, 24, 25] that learns
sample similarity metrics, memory-based family [26, 8, 27] that learns a fast adaptation algorithm via
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memory models [28], and optimization-based family [7, 6, 12, 10] that learns a model initialization
for fast adaptation. Among them, optimization based methods are more preferable, thanks to its
simplicity and effectiveness [7, 11, 29]. One representative method in this line is MAML [7] that
learns a network initialization such that the network can adapt to a new task via a few gradient descent
steps. Later, various variants are proposed to improve MAML [30, 12, 31]. Among them, HSML [31]
considers the hierarchical parameter structures in tasks by learning task embeddings to measure task
similarity. But it has two issues: (1) feature similarity cannot well reveal model parameter structures
in tasks as shown in Fig. 1 and (2) learning similar embeddings for similar tasks is hard, as one cannot
well align sample orders in tasks without global sample information (labels) and recurrent networks
is sensitive to input orders. In contrast, we measure task similarity in the model parameter space
and avoid the above issues. To handle multimodal task distribution, for a task T , MMAML [32] first
learns its task embedding and then its task-specific parameter τ which modulates meta-initialization
θ as inner-product initialization τ�θ for T . It does not explicitly utilize task similarity as it still
learns task-specific initialization. In contrast, we explore task structure by clustering similar tasks and
learn group-specific initialization. Moreover, like [31], learning similar embeddings for similar tasks
is hard. Besides, MMAML needs accurate task-specific parameter τ to align with high-dimensional
θ to obtain accurate task initialization, increasing learning difficulty. TSA-MAML also differs from
multi-task learning, e.g. [33, 34, 35], as TSA-MAML learns group-specific initialization with fast
adaptation ability to new tasks, while the later directly learns task-specific optimal model.

The theoretical analysis of MAML is rarely investigated though heavily desired. Golmant [36] and
Finn et al. [30] showed the convergence of MAML under strongly convex setting. In [37, 38], the
convergence behavior of MAML on non-convex problems were studied. Saunshi et al. [39] analyzed
the sample complexity for Reptile-alike algorithm [10] instead of MAML. The works [40, 41, 42, 43,
44] study the generalization performance of meta learning. But they focus on general meta learning
methods and their results do not well reveal any unique property of MAML. For instance, they cannot
explain why a few gradient descent steps on a few data in MAML is sufficient to obtain good testing
performance. In contrast, by focusing on MAML itself, our theory well justifies this essential design
in MAML. Besides, our results are more heuristic and directly derive a new MAML variant which
leverages task similarity to facilitate new task learning and is well testified by experimental results.

3 Theoretical Analysis of MAML

Here we first briefly recall the formulation of MAML and then analyze the testing performance of the
adapted task-specific model via a few gradient descent steps in MAML.

3.1 Formulation of MAML

MAML [7] is to learn a good initialization parameter θ for a class of parameterized learner f : X 7→ Y
(e.g. a classifier) such that for any task T drawn from a task distribution T , its task-specific adapted
parameter θT via one gradient descent step from θ on a small training dataset Dtr

T = {(xi,yi)}Ki=1

can perform well on its test dataset Dts
T = {(x̃i, ỹi)}Ki=1. Towards this goal, for each task T ∼ T ,

MAML optimizes the test loss of its adapted parameter θT as follows
minθ ET∼T LDts

T
(θ − α∇LDtr

T
(θ)),

where LDT
(θT )= 1

K

∑
(x,y)∈DT

`(f(θT ,x),y) with DT = Dtr
T or Dts

T is the empirical risk on the
dataset DT , and α is a learning rate. Here the function `(f(θT ,x),y) measures the discrepancy
between the prediction f(θT ,x) and the ground truth y, e.g. the cross-entropy loss in classification.

After learning the initialization θ∗, given a test task T ∼ T with small training and test datasets Dtr
T

and Dts
T respectively, MAML adapts θ∗ to task T via a few gradient descent steps on Dtr

T and then
tests the adapted parameter on Dts

T . In spite of its impressive performance, there is no rigorously
theoretical analysis of MAML that explicitly justifies effectiveness of a few gradient based adaptation.
The following sections attempt to solve this issue by developing testing performance guarantees.

3.2 Testing Performance Analysis

Here we answer two questions: (1) why taking a few gradient descent steps on a few training
data, MAML can achieve good performance on the test data; (2) how the learnt initialization
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benefits the learning of future tasks. Let T ∼ T be any future task with K training samples
DT = {(xi,yi)}Ki=1. Assume we run q gradient descent steps on the data DT to obtain the adapted
model θqT =θ∗−α[∇LDT

(θ∗)+
∑q−1
t=1∇LDT

(θtT )] for task T with learnt initialization θ∗ and θ1T =

θ∗−α∇LDT
(θ∗). Let θ∗T ∈argminθT

{
L(θT ) := E(x,y)∼T [`(f(θT ,x),y)]

}
trained on all samples

(x,y)∼T denote the optimal model parameter of the task T ∼ T . Before analysis, we first give
necessary definitions which are fairly standard in the stochastic optimization [45, 46, 47, 48, 49] and
the analysis of MAML [30, 36, 37, 38].

Definition 1 (Lipschitz continuity and smoothness). We say a function g(θ) isG-Lipschitz continuous
if ‖g(θ1)− g(θ2)‖2 ≤ G‖θ1 − θ2‖2 with a constant G. g(θ) is said to be Ls-smooth if ‖∇g(θ1)−
∇g(θ2)‖2 ≤ Ls‖θ1 − θ2‖2 with a constant Ls.

Then we formally state our results in Theorem 1 which shows the role of q and the benefits of
initialization θ∗ on reducing the excess risk ER(θqT ) = ET∼T EDT

[
L(θqT ) −L(θ∗T )

]
. As ER(θqT )

evaluates the loss difference [`(f(θqT ,x),y)−`(f(θ∗T ,x),y)] on all samples (x,y) ∼ T and all
tasks T ∼ T , it can well measure the testing performance of the adapted parameter θqT [14, 15].

Theorem 1. (Testing Performance Analysis) Suppose `(f(θ,x),y) is G-Lipschitz continuous
w.r.t. the parameter θ. We also assume `(f(θ,x),y) is Ls-smooth w.r.t. θ and α obeys α ≤
1
Ls

. By setting ρ = 1 + 2αLs, then for any T ∼ T and DT ={(xi,yi)}Ki=1 ∼ T , we have

ER(θqT )
(a)

≤ 2G2(ρq−1)

KLs
+ET∼T EDT

[
LDT

(θqT )−L(θ∗T )
] (b)
≤ 2G2(ρq−1)

KLs
+

1

2α
ET∼T

[
‖θ∗−θ∗T ‖22

]
.

See its proof in Appendix B.2. From the first inequality (a) in Theorem 1, one can observe that the
excess risk ER(θqT ) of the task-specific adapted model θqT for task T is determined by two factors, i.e.,
the training sample number K for each task and the expected loss distance ET∼T EDT

[
LDT

(θqT )−
L(θ∗T )

]
between the adapted parameter θqT provided by MAML and the optimal model θ∗T for task

T . Obviously, the larger training sample number K is, the smaller the first term in the upper bound is.
Besides, the closer θqT is to θ∗T , the better task-specific parameter θqT with smaller excess risk.

From the results, one way to reduce the loss LDT
(θqT ) is to increase the number q of gradient descent

steps for adaptation which however also increases the first term in the upper bound, as ρ is often
slightly larger than one since we often use a small learning rate α. To trade-off the first and second
terms, q should not be large. This is because the second term ET∼T EDT

[
LDT

(θqT )−L(θ∗T )
]

would
decrease very fast at the first several iterations but reduce slowly along more optimization iterations,
especially for small datasets (see the illustrations in Fig. 5 in Appendix A.3), while the first term
always exponentially increases. This explains why MAML often adapts the learnt initialization θ∗ to
new tasks via a few gradient descent steps, and also provides new insights to set step number q.

The second inequality (b) in Theorem 1 justifies the benefits of the learnt initialization θ∗ to the
testing performance. Specifically, Theorem 1 shows the smaller distance between θ∗ and θ∗T , the
smaller excess risk. Intuitively, if θ∗ is close to θ∗T , the task-specific adapted parameter θqT would
be close to θ∗T , guaranteeing good testing performance of θqT on its corresponding task T ∼ T .
Fortunately, empirical results of MAML show that a few gradient steps from θ∗ can provide good
performance for test task T ∼ T , indicating small distance ‖θ∗ − θ∗T ‖22.

4 Task Similarity Aware MAML

Theorem 1 shows that if one hopes to achieve good testing performance, the learnt initialization
θ∗ should be close to the optimal model parameter θ∗T of any task T ∼ T , i.e. small distance
ET∼T [‖θ∗−θ∗T ‖22]. One natural way to further reduce this distance is to learn multiple initializations
{θ∗i }mi=1 and select a correct initialization θ∗iT =A({θ∗i }mi=1, T ) from {θ∗i }mi=1 for a specific task
T such that ET∼T [‖A({θ∗i }mi=1, T ) − θ∗T ‖22] is small. Here given a task T , the learner A assigns
it into one of the m groups according to the similarity between T and the tasks in each group such
that the optimal model parameter θ∗T of T is close to the initialization A({θ∗i }mi=1, T ) shared by the
tasks in the same group. Here we focus on a general learner A and provide one effective approach to
implement it below. Towards this goal, we propose task similarity aware MAML (TSA-MAML):

min{θi}mi=1,A ET∼T LDts
T

(A({θi}mi=1, T )− α∇LDtr
T

(A({θi}mi=1, T ))).
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Intuitively, this model aims at using the learner A to cluster tasks T ∼ T into m groups according
to their similarity in terms of their optimal model parameter estimation such that the tasks in each
group are sufficiently close to a common initialization. Then based on Theorems 1, we derive
the testing performance bound of TSA-MAML. Let {θ∗i }mi=1 be the learnt multiple initializations,
θ̄∗T = A({θ∗i }mi=1, T ) be the assigned initialization for task T , and θqT be the adapted parameter
θqT = θ̄∗T −α

[
∇LDT

(θ̄∗T )+
∑q−1
t=1∇LDT

(θtT )
]

for task T with θ1T = θ̄∗T − α∇LDT
(θ̄∗T ). θ∗T is the

optimal model parameter of the population risk L(θT ) = E(x,y)∼T [`(f(θT ,x),y)] on task T . Then
we state our results in Corollary 1 with proof in Appendix C.1.

Corollary 1. With the same assumptions in Theorem 1 and ρ=1+2αLs, for any T ∼T and DT =
{(xi,yi)}Ki=1∼T , the expected excess risk ER(θqT ) and the population gradient EPG(θqT ) satisfies

ER(θqT )≤ τ1
KLs

+
1

2α
ET∼T

[
‖A({θ∗i}mi=1,T )−θ∗T ‖22

]
where τ1 = 2G2(ρq−1).

Corollary 1 shows that if the learner A can assign the task T ∼ T into a correct group with a
small distance ET∼T [‖A({θ∗i }mi=1, T ) − θ∗T ‖22], TSA-MAML would be expected to have smaller
expected excess risk ER(θqT ) and thus better testing performance than MAML. This can be intuitively
understood: by grouping the tasks T ∼ T into m clusters such that the tasks in the same group
have similar optimal model parameters and by learning a group-specific shared initialization for each
group, the optimal model parameters of tasks in a group will be much closer to the group-specific
shared initialization learnt by TSA-MAML than a common initialization learnt for all tasks T ∼ T in
MAML. Accordingly, TSA-MAML requires less samples to adapt to new tasks and thus achieves
better testing performance.

Algorithm 1 Meta Framework for TSA-MAML

Input: learning rates α and β, task distribution T .
Initialization: initialize {θ0i }mi=1 via the vanilla MAML and k-means based approach.
for t = 0, · · · , S − 1 do

sample a task mini-batch St={Ti}si=1 as Ti∼T .
for task Ti in St do

set initialization θiTi
=A({θti}mi=1,Ti) for Ti.

compute gradient ∇LDtr
T

(θiTi
).

update task-specific parameter θTi as θTi = θiTi
− α∇LDtr

T
(θiTi

) for task Ti.
end for
update{θt+1

i }mi=1 as follows:
{θt+1

i }mi=1 ={θti}mi=1−β
∑
Ti∼T∇{θt

i}mi=1
LDts

Ti
(θTi).

end for
Output: {θSi }mi=1

Implementation. The key for implementing TSA-MAML is to design the learner A which assigns a
task T into a correct group such that its optimal model parameter is close to the initialization of the
group. Here we implement A as follows. Firstly, we train vanilla MAML and obtain the initialization
θ∗ for all tasks T ∼ T . Then we use vanilla MAML with initialization θ∗ to compute the estimated
optimal parameters {θ̄Ti

}ni=1 of sufficient sampled tasks {Ti}ni=1 and perform k-means [50] on
{θ̄Ti
}ni=1 to cluster them into m groups {Gi}mi=1. See the experimental settings of n and m in Sec. 5.

Next, we initialize each group-specific initialization θ0i by averaging the model parameters {θ̄Ti
}i∈Gi

.
Finally, for training, given a task T , we also first use vanilla MAML with initialization θ∗ to compute
its estimated optimum θ̄T , and then find a group Gi such that the group-specific initialization θi has
a smallest Euclidean distance to θ̄T . In this way, we can use task T to update the initialization θi for
group Gi like MAML. Note, we measure the task similarity in the model parameter space instead
of the task feature space (sample feature) which measures the similarity more accurately, since task
features cannot well reveal the group structures of the optimal models of tasks which is illustrated by
Fig. 1 and will be discussed in Sec. 5.1 with more details. See detailed algorithm in Algorithm 1.
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5 Experiments

5.1 Evaluation on Group-Structured Data

Datasets. We investigate whether TSA-MAML can leverage the task similarity to discover task-group
structures and further learn group-specific initializations. We randomly sample each training/test
task from one of the three datasets, i.e. Aircraft dataset [16], CUB Birds [17] and FGVCx-Fungi
dataset [18]. As each dataset only contains one category, e.g. birds, the tasks drawn from each
dataset should have similar optimal model parameters, indicating remarkable group structures in these
optimal model parameters as illustrated by Fig. 1. Accordingly, discovering these group structures
and learning group-specific initializations can benefit new task learning. Similarly, we construct the
second group-structured dataset which contains Stanford Car [51], CUB Birds [17] and FGVCx-
Fungi [18]. Like conventional setting, each sub-dataset, e.g. CUB Birds, contains meta-training,
meta-validation and meta-test classes which is specified in [31].

Results. Table 1 shows that TSA-MAML achieves the best performance over other state-of-the-
arts. Specifically, on the first group-structured dataset (Aircraft + Birds + Fungi), TSA-MAML
respectively makes about 2.95%, 2.84% and 3.23% improvements on the three sub-dataset (from
left to right). It also brings about 4.00% improvement for the overall accuracy. Similarly, for the
second group-structured dataset (Car + CUB Birds + Fungi), TSA-MAML also outperforms others
on all three sub-datasets and averagely improves by about 2.36%. Compared with the approaches
learning one common initialization, e.g. MAML and Reptile, TSA-MAML leverages task similarity
in the model parameter space to discover the group structures in the tasks and learns group-specific
initializations to facilitate the learning of new tasks, boosting the performance.

Fig. 2 further reports the usage frequency of the multiple initializations learnt by TSA-MAML
when testing new tasks. After learning three initializations, we sample 1,000 test tasks from each
sub-dataset of the group-structured dataset, and then assign one initialization for each test task by first
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Figure 2: Usage frequency of multiple ini-
tializations in TSA-MAML on new tasks.

using MAML to find its approximate optimal model θT
and selecting a learnt initialization with smallest distance
to θT . The values in the (i, j)-th grid in Fig. 2 denotes
the frequency that TSA-MAML assigns the i-th learnt
initialization to the tasks from the j-th sub-dataset. From
these results in Fig. 2, one can observe that in most cases,
TSA-MAML assigns the same learnt initialization for
the tasks from the same sub-dataset. This well demon-
strates that TSA-MAML has leveraged the task similarity
and thus can well learn the group structures in the tasks,
explaining the superiority over state-of-the-arts.

5.2 Evaluation on Real Data

We evaluate TSA-MAML on two benchmarks, tieredImageNet [52] and CIFARFS [53]. From
Table 2 (tieredImageNet) and Table 3 (CIFARFS) in Appendix A, one can observe that TSA-MAML
consistently outperforms the compared methods. Specifically, on tieredImageNet, it averagely
improves by about 1.68% and 1.20% on the four test cases under non-transduction and transduction
cases. Similarly, on CIFARFS, TSA-MAML respectively brings about 1.91% and 1.55%, 1.29%
average improvements on the four test cases under non-transduction and transduction cases. These
results demonstrate the advantages of TSA-MAML. Besides, compared with MAML, TSA-MAML

Table 1: Classification accuracy (%) of the compared approaches on the 5-shot 5-way few-shot
learning tasks in the two group-structured datasets (600 test episodes with 95% confidence intervals).

Aircraft + CUB Bird + FGVCx Fungi Stanford Car + CUB Bird + FGVCx Fungi
aircraft bird fungi average car bird fungi average

Reptile [10] 60.46±0.68 71.96±0.79 51.71±0.84 61.38 43.64±0.64 69.63±0.78 52.06±0.85 55.11
HSML [31] 69.89±0.90 68.99±1.01 53.63±1.03 64.17 48.19±0.93 71.20±0.97 53.48±1.08 57.62

MMAML [32] 56.02±0.63 68.33±0.82 53.44±0.76 59.26 34.97±0.46 64.83±0.80 53.33±0.77 51.04
FOMAML [7] 49.60±0.98 69.53±0.95 47.56±0.83 55.56 34.20±0.72 68.50±0.78 46.66±0.89 49.79

MAML [7] 67.82±0.65 70.55±0.77 53.20±0.82 63.86 47.67±0.70 68.64±0.82 53.43±0.89 56.25
TSA-MAML 72.84±0.63 74.80±0.76 56.86±0.87 68.17 50.01±0.65 73.92±0.80 56.03±0.87 59.98
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Table 2: Few-shot classification accuracy (%) of the compared approaches on the tieredImageNet
dataset. The reported accuracies are averaged over 600 test episodes with 95% confidence intervals.

method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way
Matching Net [9] 34.95 ± 0.89 43.95 ± 0.85 22.46 ± 0.34 31.19 ± 0.30
Meta-LSTM [6] 33.71 ± 0.76 46.56 ± 0.79 22.09 ± 0.43 35.65 ± 0.39

Reptile [10] 49.12 ± 0.43 65.99 ± 0.75 31.79 ± 0.28 47.82 ± 0.30
HSML [31] 47.36 ± 0.84 66.16 ± 0.78 33.39 ± 0.57 51.53 ± 0.55

MMAML [32] 44.82 ± 0.46 61.47 ± 0.49 30.42 ± 0.37 48.92 ± 0.29
FOMAML [7] 48.01 ± 1.74 64.07 ± 1.72 30.31 ± 1.12 46.54 ± 1.24

MAML [7] 48.50 ± 1.83 65.93 ± 1.78 32.41 ± 1.23 48.81 ± 1.32
TSA-MAML 48.82 ± 0.88 67.82 ± 0.72 34.48 ± 0.56 52.26 ± 0.55

Reptile + Transduction [10] 51.06 ± 0.45 66.30 ± 0.78 33.79 ± 0.29 51.27 ± 0.31
HSML + Transduction [31] 48.82 ± 0.86 66.74 ± 0.76 34.63 ± 0.55 51.47 ± 0.54

MMAML + Transduction [32] 48.52 ± 0.47 64.39 ± 0.47 33.69 ± 0.35 50.90 ± 0.29
FOMAML + Transduction [7] 50.12 ± 1.82 67.43 ± 1.80 31.53 ± 1.08 49.99 ± 1.36

MAML + Transduction [7] 50.48 ± 1.81 68.06 ± 1.75 34.25 ± 1.19 51.69 ± 1.33
TSA-MAML + Transduction 52.03 ± 0.86 68.97 ± 0.74 35.78 ± 0.58 52.50 ± 0.56

respectively makes about 1.44% and 1.73% average improvements on tieredImageNet and CIFARFS.
These observations further confirm our theories in Sec. 3.2.

6 Conclusion

In this work, we theoretically justify the effectiveness of a few gradient based adaptation and the
benefits of the learnt initialization for fast adaptation. Then we propose TSA-MAML as a new variant
of MAML which leverages the task-similarity via learning shared initialization for similar tasks to
facilitate learning new tasks. Experimental results demonstrate the superiority of TSA-MAML.
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