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Abstract

This supplementary document contains the technical proofs of the results and some
additional experimental results of the NeurIPS’20 workshop submission entitled
“Task Similarity Aware Meta Learning: Theory-inspired Improvement on MAML”.
It is structured as follows. Appendix A first provides more experimental results and
details, and then presents investigation on the robustness of initialization number
and curves of loss decrease along more gradient steps for adaptation. Appendix A
also provides comparison between TSA-MAML and MAML using larger model.
Then Appendix B gives the proofs of the main results in Sec. 3.2, including
Theorem 1. Finally, in Appendix C we presents the proofs of Corollary 1 in Sec. 4.

Table 3: Few-shot classification accuracy (%) of the compared approaches on the CIFARFS dataset.
The reported accuracies are averaged over 600 test episodes with 95% confidence intervals.

method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way
Matching Net [1] 36.64 ± 1.13 42.68 ± 0.96 15.02 ± 1.05 32.53 ± 0.93
Meta-LSTM [2] 41.93 ± 1.20 61.40 ± 1.15 31.40 ± 0.75 41.25 ± 0.66

Reptile [3] 51.26 ± 0.99 68.62 ± 0.98 35.73 ± 0.94 54.35 ± 0.91
HSML [4] 46.72 ± 0.87 68.76 ± 0.76 33.89 ± 0.55 53.94 ± 0.49

MMAML [5] 40.64 ± 0.50 49.64 ± 0.49 23.80 ± 0.28 37.19 ± 0.27
FOMAML [6] 47.03 ± 1.47 64.20 ± 1.38 34.65 ± 1.09 51.35 ± 1.16

MAML [6] 51.98 ± 0.87 68.91 ± 0.74 38.48 ± 0.55 55.24 ± 0.54
TSA-MAML 53.07 ± 0.85 71.37 ± 0.74 39.77 ± 0.53 58.05 ± 0.56

Reptile + Transduction [3] 54.03 ± 0.92 72.60 ± 0.83 38.41 ± 0.97 57.16 ± 0.87
HSML + Transduction [4] 54.71 ± 1.50 69.62 ± 1.01 38.49 ± 1.22 55.51 ± 0.68

FOMAML + Transduction [6] 49.30 ± 1.18 66.96 ± 1.27 37.83 ± 1.06 53.23 ± 1.12
MMAML+ Transduction [5] 45.16 ± 0.58 58.56 ± 0.51 27.30 ± 0.25 41.26 ± 0.26
MAML + Transduction [6] 57.46 ± 0.90 72.75 ± 0.71 39.97 ± 0.56 56.21 ± 0.55

TSA-MAML + Transduction 58.21 ± 0.93 73.52 ± 0.72 42.18 ± 0.58 58.69 ± 0.56

A More Experiments
A.1 More Evaluation Results on Group-Structured Data

Experimental setting. Following [6, 7], we use the episodic procedure for K-shot N -way few-
shot learning task. We use the same 4-layered convolution network in [6, 3] for evaluation. In
TSA-MAML, we set its initialization number m as three and the task number as n = 10, 000 for
clustering in k-means. For training, we use Adam [8] with learning rate 10−3 and total iteration
number S = 40, 000. To be more stable, we use cosine annealing in [9] to gradually decrease the
learning rate. We sample 600 test tasks from each sub-dataset for evaluation. Here we test all methods
on the 5-shot 5-way learning tasks under the transduction setting where test tasks share information
via batch normalization [3], since the baselines are reported under this setting [6, 4].

Results. Fig. 3 further reports the usage frequency of the multiple initializations learnt by TSA-
MAML when testing new tasks. After learning three initializations, we sample 1,000 test tasks from
4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.
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Figure 3: Usage frequency of multiple initializations in TSA-MAML on new tasks.
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Figure 4: Effects of initialization number to TSA-MAML.

each sub-dataset of the group-structured dataset, and then assign one initialization for each test task
by first using MAML to find its approximate optimal model θT and selecting a learnt initialization
with smallest distance to θT . The values in the (i, j)-th grid in Fig. 3 denotes the frequency that
TSA-MAML assigns the i-th learnt initialization to the tasks from the j-th sub-dataset. From these
results in Fig. 3, one can observe that in most cases, TSA-MAML assigns the same learnt initialization
for the tasks from the same sub-dataset. This well demonstrates that TSA-MAML has leveraged the
task similarity and thus can well learn the group structures in the tasks, explaining the superiority
over state-of-the-arts.

A.2 More Evaluation Results on Real Data

Datasets. We evaluate TSA-MAML on two benchmarks, CIFARFS [10] and tieredImageNet [11].
CIFARFS is a recently proposed few-shot classification benchmark. It splits the 100 classes from
CIFAR-100 [12] into 64, 16 and 20 classes for training, validation, and test respectively. Each class
contains 600 images of size 32× 32× 3. TieredImageNet contains 608 classes from ILSVRC-12
dataset [13], in which each class has 600 images of size 84× 84× 3. Moreover, it groups classes into
broader hierarchy categories corresponding to higher-level nodes in the ImageNet [14]. Specifically,
there are total 34 top hierarchy categories which are further split into 20 training categories (351
classes), 6 validation categories (97 classes) and 8 test categories (160 classes). So all training classes
are sufficiently distinct from the test classes, giving a more challenging learning task.

Experimental setting. We use the same network architecture, training strategy and task number n in
Sec. A.1. In TSA-MAML, the training iteration number S is 40, 000 for CIFARFS and 80, 000 for
tieredImageNet and the cluster number m is five for both datasets. Like [6, 3], we test all methods
on 600 test episodes under (non-)transduction settings. In non-transduction, batch normalization
statistics are collected from all training data and one test sample. See transduction setting in Sec. A.1.

Results. From Table 3, one can observe that TSA-MAML consistently outperforms optimization
based methods, e.g. MAML, HSML and MMAML, and metric based method, e.g. Matching Net.
Specifically, on CIFARFS, TSA-MAML respectively brings about 1.09%, 2.46%, 1.29% and 2.81%
improvements on the four test cases (from left to right) under non-transduction setting, and under
transduction setting it also makes about 0.75%, 0.77%, 2.21% and 2.48% improvements for the four
cases. Similarly, on tieredImageNet, it averagely improves by about 1.68% and 1.20% on the four
test cases under non-transduction and transduction cases. These results demonstrate the advantages
of TSA-MAML behind which the reasons have been discussed in Sec. A.1. Besides, compared
with MAML, TSA-MAML respectively makes about 1.73% and 1.44% average improvements on
CIFARFS and tieredImageNet. These observations further confirm our theories in Sec. 3.2.

Robustness of TSA-MAML to The Number of Initializations. Fig. 3 shows the effects of initial-
ization number m to the testing performance of TSA-MAML. When m ranges from 3 to 11, the
performance of TSA-MAML on 1-shot 10-way learning tasks on CIFARFS are relatively stable. So
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(a) Loss on the tieredImageNet dataset
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(b) Classification accuracy on the tieredImageNet dataset

Figure 5: Illustration of loss decrease and classification accuracy of MAML and TSA-MAML. One
can observe that at the first several optimization gradient descent steps, both MAML and TSA-MAML
decrease very fast but reduce slowly along with optimization steps. Similarly, one can find that
Moreover, one can find that both MAML and TSA-MAML increase their accuracy very fast but
improve it slowly along with gradient descent steps. Moreover, TSA-MAML usually decreases its
loss and improves its accuracy faster than MAML since its group-specific initializations are more
closer to the optimal task-specific models and thus can be adapted to new tasks more quickly.

TSA-MAML is robust to m. These results testify the robustness of TSA-MAML to the choice of
m. They also indicate that using MAML to estimate optimal model parameters of tasks and then
clustering these model parameters according to their distances to the m group-specific initializations
is valid when m is not large. This is because assigning tasks into m groups means dividing model
parameter space into m regions and is not hard when m is not large, as estimating approximate
location of optimal task models in the parameter space is sufficient and can be achieved by MAML.

A.3 Fast Decrease of Losses of MAML and TSA-MAML at The First Several Gradient
Descent Steps

In this subsection, we investigate the loss decreases in MAML and TSA-MAML from the learnt
initializations along with gradient descent steps. Here we evaluate on TieredImageNet dataset.
Specifically, we randomly sample 600 tasks and compute their losses and classification accuracy with
along gradient descent steps. Then we report the average loss and accuracy of these 600 tasks. From
Fig. 5, one can observe that at the first several gradient descent steps (e.g. 7), both the losses LDT

(θt)
of MAML and TSA-MAML decrease very fast, but with along more optimization gradient steps, they
reduce very slowly. This is because the training dataset is very small and thus a few gradient descent
steps are sufficient to fit these data. Note for MAML, the first term in the upper bound in Theorem 1
always increases exponentially along with the gradient steps. In this way, to achieve smaller excess
risk, we should not run many gradient steps. This well explains why MAML usually adapts the learnt
initialization θ∗ to new tasks by taking only a few gradient descent steps. Similarly for TSA-MAML,
our Corollary 1 also suggests us to use a few gradient descent steps for fast adaptation since we
also need to balance the two terms in the upper bound of the excess risk. Also, for accuracy, we
can also observe very similar phenomena. Besides, by comparison, we also observe that the loss
of TSA-MAML is always much smaller than MAML which means that compared the common
initialization learnt by MAML for all tasks, the learnt group-special initializations by TSA-MAML
are closer to the optimal model parameters of the testing tasks. We can also observe similar results on
the accuracy metric. These results well demonstrate the advantages of TSA-MAML over MAML.
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A.4 Comparison between TSA-MAML and MAML Using Larger Network Model

In Sec. A.1 of the manuscript, we have explained that the advantage of TSA-MAML over MAML
comes from its design principle introduced above instead of higher model complexity. This is because
MAML and TSA-MAML use the same network and have same parameter dimension and thus same
model complexity (data fitting capacity) [15]. We also conduct experiments to further investigate this
view. On the group-structured dataset, we test MAML whose network is 3× larger than that used
in TSA-MAML. For brevity, we call the MAML using large network MAML-L. By comparison,
TSA-MAML still outperforms MAML-L. Here we test MAML-L and TSA-MAML on CIFARFS. We
directly increase the depth of MAML-L from 4 to 12 and then test its performance. From the results
in Table 4, one can observe that TSA-MAML performs better than MAML-L. Indeed, MAML-L
faces over-fitting issue for few-shot learning, which can be observed from the comparison between
MAML-L and MAML. So these experimental results further show the superiority of TSA-MAML
over MAML comes from its design principle instead of higher model complexity. Unlike MAML
learning one initialization for all tasks, TSA-MAML clusters similar tasks into the same group and
learns group-specific initialization which can faster and better adapt itself to tasks in the same group.

Table 4: Few-shot classification accuracy (%) of the compared approaches on the CIFAR-FS dataset.
The reported accuracies are averaged over 600 test episodes with 95% confidence intervals.

CIFAR-FS (transduction) 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

MAML(4 layers) 57.46 ± 0.90 72.75 ± 0.71 39.97 ± 0.56 56.21 ± 0.55
MAML-L(12 layers) 55.66 ± 1.04 68.29 ± 0.78 40.77 ± 0.64 53.74 ± 0.53

TSA-MAML (4 layers) 58.21 ± 0.93 73.52 ± 0.72 42.18 ± 0.58 58.69 ± 0.56

B Proof of The Results in Sec. 3.2

B.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas which will be used for proving the results in Sec. 3.2.

Lemma 1. Assume that `(f(θT ,x),y) is Ls-smooth in θT . If α ≤ 1
Ls

, then it holds for any task T
and any parameter θT that

LDT
(θ1T )− LDT

(θT ) ≤
1

2α
‖θT − θ∗‖2,

where θ∗ denotes the learned initialization and θ1T = θ∗ − α∇LDT
(θ∗).

Proof. Let hDT
(θT ) = 〈∇LDT

(θ∗),θT − θ∗〉 + 1
2α‖θT − θ

∗‖22. Then we know that θ1T =
argminθT hDT

(θT ) = θ∗ − α∇LDT
(θ∗). By using Taylor expansion, for θ∗ and any θT , there

exists a constant λ ∈ (0, Ls] such that

LDT
(θT ) = LDT

(θ∗) + hDT
(θT ) +

1

2

(
λ− 1

α

)
‖θT − θ∗‖2. (1)

Then respectively replacing θT and λ with θ1T and λ∗ ∈ (0, Ls], conducting subtraction on the two
equations, we can obtain

LDT
(θ1T )− LDT

(θT ) =hDT
(θ1T )− hDT

(θT ) +
λ∗ − 1

α

2
‖θ1T − θ∗‖2 −

λ− 1
α

2
‖θT − θ∗‖2

¬
≤
λ∗ − 1

α

2
‖θ1T − θ∗‖2 −

λ− 1
α

2
‖θT − θ∗‖2


≤

1
α − λ
2
‖θT − θ∗‖2 ≤

1

2α
‖θT − θ∗‖2,

where ¬ uses the fact that θ1T is the optimum of hDT
(θT ) giving h(θ1T ) ≤ h(θT ); in , we set

α ≤ 1
Ls

giving λ− 1/α ≤ 0 and λ∗ − 1/α ≤ 0 due to λ, λ∗ ∈ (0, Ls]. The proof is completed.
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Lemma 2. Assume that `(f(θT ,x),y) is Ls-smooth in θT . If α ≤ 1
Ls

, then it holds for any task T
and parameter θT that

LDT
(θqT )− LDT

(θT ) ≤
1

2α
‖θT − θ∗‖2 − α

(
1− αLs

2

) q−1∑
t=1

‖∇LDT
(θtT )‖22,

where θ∗ denotes the learned initialization and θqT = θ∗ − α
(
∇LDT

(θ∗) +
∑q−1
t=1 ∇LDT

(θtT )
)

.

Here θtT = θ∗ − α
(
∇LDT

(θ∗) +
∑t−1
s=1∇LDT

(θsT )
)

with θ1T = θ∗ − α∇LDT
(θ∗) denotes the

adapted parameter after the t-th iteration.

Proof. Let hDT
(θT ) = 〈∇LDT

(θ∗),θT − θ∗〉 + 1
2α‖θT − θ

∗‖22. Then we know that θ1T =
argminθT hDT

(θT ) = θ∗ − α∇LDT
(θ∗). Then by using Lemma 1, we can obtain the follow-

ing results. If α ≤ 1
Ls

, then it holds for any task T and parameter θT that

LDT
(θ1T )− LDT

(θT ) ≤
1

2α
‖θT − θ∗‖2.

At the same time, we have θqT = θ∗ − α
(
∇LDT

(θ∗) +
∑q−1
t=1 ∇LDT

(θtT )
)

= θ1T −
α
∑q−1
t=1 ∇LDT

(θtT ). This actually means that we want to minimize the loss LDT
(θ) from the

initialization θ1T . Specifically, here we only run (q − 1) gradient steps. In this way, we can upper
bound the loss at each iteration as follows:

LDT
(θt+1
T ) ≤LDT

(θtT ) + 〈∇LDT
(θtT ),θ

t+1
T − θtT 〉+

Ls
2
‖θt+1

T − θtT ‖2

¬
=LDT

(θtT )− α
(
1− αLs

2

)
‖∇LDT

(θtT )‖22,

where ¬ uses θt+1
T − θtT = −α∇LDT

(θtT ). In this way, summing up from t = 1 to q − 1, we have

LDT
(θqT ) ≤LDT

(θ1T )− α
(
1− αLs

2

) q−1∑
t=1

‖∇LDT
(θtT )‖22.

Therefore, we have

LDT
(θqT )− LDT

(θT ) ≤
1

2α
‖θT − θ∗‖2 − α

(
1− αLs

2

) q−1∑
t=1

‖∇LDT
(θtT )‖22.

The proof is completed.

Lemma 3. Assume that `(f(θ,x),y) is G-Lipschitz continuous and Ls-smooth with respect
to θ. Given a learning task T , let L(θT ) = E(x,y)∼T [`(f(θT ,x),y)] and LDT

(θT ) =
1
K

∑
(x,y)∈DT

`(f(θT ,x),y) respectively denote the expected and empirical losses on DT =

{(xi,yi)}Ki=1 ∼ T . Consider the following empirical minimization problem:

θ1T = argmin
θT

{
hDT

(θT ) = 〈∇LDT
(θ∗),θT − θ∗〉+

1

2α
‖θT − θ∗‖22

}
= θ∗ − α∇LDT

(θ∗).

Assume D(i)
T is identical to DT except that one of the (xi,yi) is replaced by another random sample

(x′i,y
′
i). We then denote

θ1T,i = argmin
θT

h
D

(i)
T

(θT ) = θ
∗ − α∇L

D
(i)
T

(θ∗),

where h
D

(i)
T

(θT ) :=
1
K

(〈∑
j 6=i∇`(f(θT ,xj),yj) +∇`(f(θT ,x′i),y′i),θT − θ∗

〉)
+ 1

2α‖θT −
θ∗‖22. Then the following bound holds that

‖θ1T − θ1T,i‖ ≤
4αG

K
.
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Proof. The result can be proved by stability argument. For brevity, let r(θT ) = 1
2α‖θT − θ

∗‖2 is an
1
α -strongly convex regularization function. Then we can show that

hDT
(θ1T,i)− hDT

(θ1T )

=
〈
∇LDT

(θ∗),θ1T,i − θ1T
〉
+ r(θ1T,i)− r(θ1T )

=
1

K

∑
j 6=i

(
〈∇`(f(θ∗,xj),yj),θ1T,i − θ1T 〉

)
+

1

K
〈∇`(f(θ∗,xi),yi),θ1T,i − θ1T 〉+ r(θ1T,i)− r(θ1T )

=h
D

(i)
T

(θ1T,i)− hD(i)
T

(θ1T ) +
1

K
〈∇`(f(θ∗,xi),yi),θ1T,i − θ1T 〉 −

1

K
〈∇`(f(θ∗,x′i),y′i),θ1T,i − θ1T 〉

¬
≤ 1

K
[‖∇`(f(θ∗,xi),yi)‖+ ‖∇`(f(θ∗,x′i),y′i)‖] ·

∥∥θ1T,i − θ1T∥∥

≤2G

K
‖θ1T,i − θ1T ‖,

where in ¬ we have used the optimality of θ1T,i with respect to h
D

(i)
T

(θT ), and in  we use the

Lipschitz continuity of the loss function `(·). Since h
D

(i)
T

(θT ) is 1
α -strongly-convex, it is easily to

verify that

hDT
(θ1T,i) ≥ hDT

(θ1T ) +
1

2α
‖θ1T,i − θ1T ‖2.

Then combining the above two inequalities we arrive at

‖θ1T,i − θ1T ‖ ≤
4αG

K
.

The proof is concluded.

Lemma 4. Assume that `(f(θ,x),y) is G-Lipschitz continuous and Ls-smooth with respect
to θ. Given a learning task T , let L(θT ) = E(x,y)∼T [`(f(θT ,x),y)] and LDT

(θT ) =
1
K

∑
(x,y)∈DT

`(f(θT ,x),y) respectively denote the expected and empirical losses on DT =

{(xi,yi)}Ki=1 ∼ T . Consider the following empirical minimization problem:

θqT =argmin
θT

{
hDT

(θT ) =

〈
∇LDT

(θ∗) +

q−1∑
t=1

∇LDT
(θtT ),θT − θ∗

〉
+

1

2α
‖θT − θ∗‖22

}

=θ∗ − α

(
∇LDT

(θ∗) +

q−1∑
t=1

∇LDT
(θtT )

)

where θtT = θ∗ − α
(
∇LDT

(θ∗) +
∑t−1
s=1∇LDT

(θsT )
)

with θ1T,i = θ∗ − α∇L
D

(i)
T

(θ∗) denotes

the adapted parameter after the t-th iteration. Then for any q, the following bound holds that

∣∣EDT∼T
[
L(θqT )− LDT

(θqT )
]∣∣ ≤ 2G2

[
(1 + 2αLs)

q − 1
]

LsK

and ∥∥EDT∼T
[
∇L(θqT )−∇LDT

(θqT )
]∥∥ ≤ 2G

[
(1 + 2αLs)

q − 1
]

K
.

Proof. For brevity, let r(θT ) = 1
2α‖θT − θ

∗‖2 is an 1
α -strongly convex regularization function.

Let us consider D(i)
T which is identical to DT except that one of the (xi,yi) is replaced by another

random sample (x′i,y
′
i). We then denote

θqT,i = argmin
θT

{
h
D

(i)
T

(θT ) :=

〈
∇L

D
(i)
T

(θ∗) +

q−1∑
t=1

∇L
D

(i)
T

(θtT,i),θT − θ∗
〉

+
1

2α
‖θT − θ∗‖22

}
,
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where θtT,i = θ
∗−α

(
∇L

D
(i)
T

(θ∗) +
∑t−1
s=1∇LD(i)

T

(θsT,i)
)

with θ1T,i = θ
∗−α∇L

D
(i)
T

(θ∗) denotes

the adapted parameter after the t-th iteration on the dataset D(i)
T . Then we can show that

hDT
(θqT,i)− hDT

(θqT ) =

〈
∇LDT

(θ∗) +

q−1∑
t=1

∇LDT
(θtT ),θ

q
T,i − θ

q
T

〉
+ r(θqT,i)− r(θ

q
T )

=h
D

(i)
T

(θqT,i)− hD(i)
T

(θqT ) +

〈
∇LDT

(θ∗)−∇L
D

(i)
T

(θ∗) +

q−1∑
t=1

[
∇LDT

(θtT )−∇LD(i)
T

(θtT,i)
]
,θqT,i − θ

q
T

〉
.

Now we bound the term
〈
∇LDT

(θ)−∇L
D

(i)
T

(θ),θqT,i − θ
q
T

〉
with θ = θ∗ or θ = θtT (t =

1, · · · , q − 1) in the above equation as follows:〈
∇LDT

(θ)−∇L
D

(i)
T

(θ),θqT,i − θ
q
T

〉
=

1

K
〈∇`(f(θ,xi),yi),θqT,i − θ

q
T 〉 −

1

K
〈∇`(f(θ,x′i),y′i),θ

q
T,i − θ

q
T 〉

≤ 1

K
[‖∇`(f(θ,xi),yi)‖+ ‖∇`(f(θ,x′i),y′i)‖] ·

∥∥∥θqT,i − θqT∥∥∥
¬
≤2G

K
‖θqT,i − θ

q
T ‖,

where in ¬ we use the Lipschitz continuity of the loss function G. At the same time, by using the
optimality of θqT,i with respect to h

D
(i)
T

(θT ) which means h
D

(i)
T

(θqT,i) ≤ hD(i)
T

(θqT ), we can further

obtain

hDT
(θqT,i)− hDT

(θqT ) ≤

〈
∇LDT

(θ∗)−∇L
D

(i)
T

(θ∗) +

q−1∑
t=1

[
∇LDT

(θtT )−∇LD(i)
T

(θtT,i)
]
,θqT,i − θ

q
T

〉

=

〈
∇LDT

(θ∗)−∇L
D

(i)
T

(θ∗) +

q−1∑
t=1

[
∇LDT

(θtT )−∇LD(i)
T

(θtT ) +∇LD(i)
T

(θtT )−∇LD(i)
T

(θtT,i)
]
,θqT,i − θ

q
T

〉

≤2qG

K
‖θqT,i − θ

q
T ‖+

q−1∑
t=1

〈
∇L

D
(i)
T

(θtT )−∇LD(i)
T

(θtT,i),θ
q
T,i − θ

q
T

〉
≤2qG

K
‖θqT,i − θ

q
T ‖+

q−1∑
t=1

∥∥∥∇LD(i)
T

(θtT )−∇LD(i)
T

(θtT,i)
∥∥∥ · ∥∥∥θqT,i − θqT∥∥∥

≤2qG

K

∥∥∥θqT,i − θqT∥∥∥+ Ls

∥∥∥θqT,i − θqT∥∥∥ q−1∑
t=1

∥∥θtT − θtT,i∥∥ .
Since h

D
(i)
T

(θT ) is 1
α -strongly-convex, it is easily to verify that

hDT
(θqT,i) ≥ hDT

(θqT ) +
1

2α
‖θqT,i − θ

q
T ‖

2.

Then combining the above two inequalities we arrive at

‖θqT,i − θ
q
T ‖ ≤

4αqG

K
+ 2αLs

q−1∑
t=1

∥∥θtT − θtT,i∥∥ .
Note that ‖θ1T,i − θ1T ‖ ≤ 4αG

K in Lemma 3. Then we can easily obtain

‖θqT,i − θ
q
T ‖ ≤

2G
[
(1 + 2αLs)

q − 1
]

LsK
.

It then follows consequently from the Lipschitz continuity of ` that for any sample (x,y) ∼ T

|`(f(θqT,i,x),y)− `(f(θ
q
T ,x),y)| ≤ G‖θ

q
T,i − θ

q
T ‖ ≤

2G2
[
(1 + 2αLs)

q − 1
]

LsK
. (2)
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Note that DT and D(i)
T are both i.i.d. samples of the task T . It follows that

EDT
[L(θqT )] = E

D
(i)
T

[
L(θqT,i)

]
= E

D
(i)
T ∪{(xi,yi)}

[
`(f(θqT,i,xi),yi)

]
.

Since the above holds for all i = 1, ...,K, we can show that

EDT
[L(θqT )] =

1

K

K∑
i=1

E
D

(i)
T ∪{(xi,yi)}

[
`(f(θqT,i,xi),yi)

]
=

1

K

K∑
i=1

EDT∪{(x′
i,y

′
i)}

[
`(f(θqT,i,xi),yi)

]
.

Concerning the empirical case, we can see that

EDT

[
LDT

(θqT )
]
=

1

K

K∑
i=1

EDT
[`(f(θqT ,xi),yi)] =

1

K

K∑
i=1

EDT∪{(x′
i,y

′
i)} [`(f(θ

q
T ,xi),yi)] .

By combining the above two inequalities we get∣∣∣EDT

[
L(θqT )− LDT

(θqT,i)
]∣∣∣ = ∣∣∣∣∣ 1K

K∑
i=1

EDT∪{(x′
i,y

′
i)}

[
`(f(θqT ,xi),yi)− `(f(θ

q
T,i,xi),yi)

]∣∣∣∣∣
≤ 1

K

K∑
i=1

EDT∪{(x′
i,y

′
i)}

[∣∣∣`(f(θqT ,xi),yi)− `(f(θqT,i,xi),yi)∣∣∣]
≤
2G2

[
(1 + 2αLs)

q − 1
]

LsK
,

where in the last inequality we have used (2). This proves the objective function inequality in the first
part of the lemma. To prove the gradient norm inequality, we note from the smoothness assumption
that

‖∇`(f(θqT ,x),y)−∇`(f(θ
q
T,i,x),y)‖ ≤ Ls‖θ

q
T − θ

q
T,i‖ ≤

2G
[
(1 + 2αLs)

q − 1
]

K
. (3)

The rest of the argument mimics that for the objective value case. Here we provide the details for the
sake of completeness. Again, note that DT and D(i)

T are both i.i.d. samples of the task distribution T .
It follows that

EDT
[∇L(θqT )] = E

D
(i)
T

[
∇L(θqT,i)

]
= E

D
(i)
T ∪{(xi,yi)}

[
∇`(f(θqT,i,xi),yi)

]
.

Since the above holds for all i = 1, ...,K, we can show that

EDT
[∇L(θqT )] =

1

K

K∑
i=1

E
D

(i)
T ∪{(xi,yi)}

[
∇`(f(θqT,i,xi),yi)

]
=

1

K

K∑
i=1

EDT∪{(x′
i,y

′
i)}

[
∇`(f(θqT,i,xi),yi)

]
.

Concerning the empirical version, we can see that

EDT

[
∇LDT

(θqT )
]
=

1

K

K∑
i=1

EDT
[∇`(f(θqT ,xi),yi)] =

1

K

K∑
i=1

EDT∪{(x′
i,y

′
i)} [∇`(f(θ

q
T ,xi),yi)] .

By combining the above two inequalities we get∥∥∥EDT

[
∇L(θqT )−∇LDT

(θqT,i)
]∥∥∥ =

∥∥∥∥∥ 1

K

K∑
i=1

EDT∪{(x′
i,y

′
i)}

[
∇`(f(θqT ,xi),yi)−∇`(f(θ

q
T,i,xi),yi)

]∥∥∥∥∥
≤ 1

K

K∑
i=1

EDT∪{(x′
i,y

′
i)}

[∥∥∥∇`(f(θqT ,xi),yi)−∇`(f(θqT,i,xi),yi)∥∥∥]
≤
2G
[
(1 + 2αLs)

q − 1
]

K
.

where in the last inequality we have used (3). The proof is concluded.
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B.2 Proof of Theorem 1

Proof. Consider a fixed task T ∼ T and its associated random sample DT ∼ T of size K. We
denote LDT

(θ) = 1
K

∑
(x,y)∈DT

`(f(θT ,x),y). From Lemma 4, we know that when we adapt q
gradient steps to new task, we have∣∣EDT∼T

[
L(θqT )− LDT

(θqT )
]∣∣ ≤ 2G2

[
(1 + 2αLs)

q − 1
]

LsK
. (4)

From Lemma 2, when α ≤ 1
Ls

, for any θT we have

LDT
(θqT )− LDT

(θT ) ≤
1

2α
‖θT − θ∗‖2,

where θ∗ denotes the learnt prior.

By taking expectation over the random sample set DT at θT = θ∗T we obtain

EDT
[LDT

(θqT )− LDT
(θ∗T )] ≤

1

2α
EDT

[
‖θ∗ − θ∗T ‖2

]
. (5)

Then we can show the following

EDT
[L(θqT )− L(θ

∗
T )] =EDT

[
L(θqT )− LDT

(θqT )
]
+ EDT

[
LDT

(θqT )− L(θ
∗
T )
]

≤
∣∣EDT

[
L(θqT )− LDT

(θqT )
]∣∣+ EDT

[
LDT

(θqT )− L(θ
∗
T )
]

¬
≤
2G2

[
(1 + 2αLs)

q − 1
]

LsK
+ EDT

[
LDT

(θqT )− LDT
(θ∗T )

]

≤
2G2

[
(1 + 2αLs)

q − 1
]

LsK
+

1

2α
EDT

[
‖θ∗ − θ∗T ‖2

]
,

where ¬ uses Eqn. (4) and  employs inequality (5). Note that EDT
[LDT

(θ∗T )] = EDT
[L(θ∗T )].

Then we can take expectation of both sides of the above over T ∼ T to obtain

ET∼T EDT
[L(θqT )− L(θ

∗
T )] ≤

2G2
[
(1 + 2αLs)

q − 1
]

LsK
+ ET∼T EDT

[
LDT

(θqT )− L(θ
∗
T )
]

≤
2G2

[
(1 + 2αLs)

q − 1
]

LsK
+

1

2α
ET∼T

[
‖θ∗ − θ∗T ‖2

]
.

This proves the results in the theorem.

C Proofs of The Results in Sec. 4

C.1 Proof of Corollary 1

Proof. For the results in Corollary 1, we can easily follow the proof sketch of Theorems 1 and 2
to obtain this kind of results. Specifically, we can replace the one common initialization θ∗ by
the learned {θ∗i }mi=1. For each task T , we also replace its adapted model parameter θqT = θ∗−
α[∇LDT

(θ∗) +
∑q−1
t=1 ∇LDT

(θtT )] in MAML as the adapted parameter θqT = A({θ∗i }mi=1, T ) −
α
(
∇LDT

(A({θ∗i }mi=1, T ))+
∑q−1
t=1 ∇LDT

(θtT )
)

in TSA-MAML. In this way, by following the
proof steps of Theorems 1 and 2, we can prove the desired results in Corollary 1. The proof is
completed.
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