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Abstract

The natural world is abundant with concepts expressed via visual, acoustic, tactile,
and linguistic modalities. Much of the existing progress in multimodal learning,
however, focuses primarily on problems where the same set of modalities are
present at train and test time, which makes learning in low-resource modalities
particularly difficult. In this work, we propose algorithms for cross-modal gen-
eralization: a learning paradigm to train a model that can (1) quickly perform
new tasks in a target modality (i.e. meta-learning) and (2) doing so while being
trained on a different source modality. We study a key research question: how can
we ensure generalization across modalities despite using separate encoders for
different source and target modalities? Our solution is based on meta-alignment,
a novel method to align representation spaces using strongly and weakly paired
cross-modal data while ensuring quick generalization to new tasks across different
modalities. We study this problem on 3 classification tasks: text to image, image to
audio, and text to speech. Our results demonstrate strong performance even when
the new target modality has only a few (1-10) labeled samples and in the presence

of noisy labels, a scenario particularly prevalent in low-resource modalities.

1 Introduction

One of the hallmarks of human intelligence is
the ability to generalize seamlessly across het-
erogeneous sensory inputs and different cogni-
tive tasks [9]]. We see objects, hear sounds, feel
textures, smell odors, and taste flavors to learn
underlying concepts present in our world [4].
Much of AI’s existing progress in multimodal
learning, however, focuses primarily on a fixed
set of predefined modalities and tasks [34, 40]
that are consistent between training and testing.
As a result, it is unclear how to transfer knowl-
edge from models trained for one modality (e.g.
visual source modality) to another (e.g. audio
target modality) at test time. This scenario is
particularly important for low-resource target
modalities where unlabeled data is scarce and
labeled data is even harder to obtain (e.g. audio
from low-resource languages [38], real-world

environments [46]], and medical images [14]).
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Figure 1: The cross-modal generalization paradigm
brings discrepancies in both input and output spaces
with new tasks expressed in new modalities. This raises
a fundamental question: how can we ensure generaliza-
tion across modalities despite using separate encoders
for different source (image) and target (audio) modali-
ties? This paper studies the minimal supervision required
to perform this alignment and succeed in cross-modal
generalization.

In the unimodal case, this is regarded as meta-

learning [[17] or few-shot learning [8]]. In contrast, we formally define the cross-modal generalization
setting as a learning paradigm to train a model that can (1) quickly perform new tasks in a target
modality (i.e. meta-learning) and (2) doing so while being trained on a different source modality. In
this paper, we study the data and algorithmic challenges for cross-modal generalization to succeed.
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As a motivating example, Figure [T illustrates a scenario where large-scale image classification
benchmarks can help audio classification, which is a less studied problem with fewer large-scale
benchmarks. In this ambitious problem statement, a key research question becomes: how can we
obtain generalization across modalities despite using separate encoders for different source (image)
and target (audio) modalities? The technical challenge involves aligning shared knowledge learned
from source image tasks with target audio tasks. Our problem statement differs from conventional
meta-learning [[17]] and domain adaptation [S9] where one can take advantage of the same source and
target modality with shared encoders which helps generalization by having the same representation
space. In our case, the discrepancies in modalities requires one to learn new output concepts expressed
in new input modalities. As a result, cross-modal generalization requires new ideas to synchronize
(align) multimodal sources and targets. What is the minimal extra supervision required to perform
this alignment?
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We present experiments on three cross-modal tasks: generalizing from (1) text to image, (2) image
to audio, and (3) text to speech. In all cases, the goal is to classify data from a new target modality
given only a few (1-10) labeled samples. We perform extensive experiments to compare with related
approaches including target modality meta-learning that would be expected to perform well since
they have seen thousands of labeled examples from the target modality during meta-training. Surpris-
ingly, CROMA is competitive with these baselines and significantly outperforms other cross-modal
approaches. In addition, we study settings where the target modality suffers from noisy or limited
data, a scenario particularly prevalent in low-resource modalities [22].

2 Related Work

Few-shot learning has enabled strong performance for settings with limited labeled data [8} 20 [22]
using techniques spanning data augmentation [2]], metric learning [55, |61], and learning better
initializations [44} 51]]. In the latter, meta-learning has recently emerged as a popular choice due to
its simplicity in combination with gradient-based methods [17].

Transfer learning focuses on transferring knowledge from external data (e.g. larger datasets [29],
unlabeled data [12], and knowledge bases [32]) to downstream tasks where labeled data is expen-
sive [57]]. Domain adaptation similarly focuses on changing data distributions [13| 27]]. However,
existing works focus on data within the same modality (i.e. image domain adaptation [S9], language
transfer learning [[12]) which simplifies the alignment problem.

Cross-modal alignment involves learning a joint space where the representations of the same
concepts expressed in different modalities are close together [4]. Alignment is particularly useful for
cross-modal retrieval (e.g. retrieving captions from images) [18] and cross-modal (or cross-lingual)
representation learning [54} |63]]. Several objective functions for learning aligned spaces from varying
quantities of paired [6} 16, 28] and unpaired [21] data have been proposed. However, cross-modal
generalization is harder since: (1) one has to learn not just the associations between modalities but



also associations to labels, (2) there is weak supervision both the target modality and in the label
space, (3) tasks in different modalities have different (but related) label spaces, and (4) new tasks in
the target modality have to be learned using only a few samples.

Cross-modal learning: Recent work has explored more general models that enable knowledge
transfer across modalities. In particular, cross-modal data programming [[14] uses weak labels in a
source modality to train a classifier in the target modality. Cross-modal transfer learning aims to
classify the same task from different input modalities [28 |65]]. Finally, few-shot learning within
target modalities (e.g. images) has been shown to benefit from additional multimodal information
(e.g. word embeddings [56} 158, 164]] or videos [66]) during training. However, these all require labeled
data from the target modality during meta-training (from a different domain). In contrast, we study
cross-modal generalization which do not assume any labeled data in the target except during few-shot
classification.

3 Formalizing Cross-modal Generalization

Cross-modal generalization is a learning paradigm to quickly perform new tasks in a target modality
despite being trained on a different source modality. To formalize this paradigm, we build on the
definition of meta-learning [25] and generalize it to study multiple input modalities. Meta-learning
uses labeled data for existing source tasks to enable fast learning on new target tasks [33]. We start by
defining M different heterogeneous input spaces (modalities) and N different label spaces (tasks).
We denote a modality by an index m € {1,..., M} andataskby n € {1,..., N}.

Each classification problem 7 (m, n) is defined as a triplet with a modality, task, plus a joint dis-
tribution: 7 (m,n) = (Xp, Yn, Pm.n(2,y)). Xy denotes the input space and ), the label space
sampled from a distribution p(m,n) := p(X,,,),) given by a marginal over the entire meta-
distribution, p(T1, ..., TN, Y1y YNy Xy s -o-Xmags Vg s - Yy )- The meta-distribution gives the un-
derlying relationships between all modalities and tasks through a hierarchical generative process
m; ~ p(m),n; ~ p(n): first picking a modality and task (m;,n;) from priors p(m) and p(n)
over input and output spaces, before drawing data x; from X,,, and labels y; from ), . Within
each classification problem is also an underlying pairing function mapping inputs to labels through
Pmn(Z,y) = p(x,y|lm,n) for all x € X,,,, y € Y, representing the true data labeling process. To
account for generalization over modalities and tasks, cross-modal generalization involves learning a
single function f,, with parameters w over the meta-distribution with the following objective:

Definition 1. The cross-modal generalization problem is

E g [fw(wmn)] .
p(z,ylm,n)

(1)

argmax L[ f,, ] := arg max
w w m,n~p(m,n)
T,Y~Pm,n (T.Y

In practice, the space between modalities and Modalities Tasks
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limited labeled data. It is helpful to think about  gjeyre 3: One obtains a subset of observed edges through
this partial observability as a bipartite graph |abeled datasets for source modalities x5 and tasks s
G = (V,,Vy, E) between a modality set V; and  (solid edges). Generalizing to the target modalities z;
task set V, (see Figure . A solid directed edge and tasks y; (dotted edge) requires bridging modalities
from v € V, to v € V, represents learning a and tasks through alignment (purple).

classifier from modality w for task v given an abundance of observed labeled data, which incurs
negligible generalization error. Since it is unlikely for all edges between V, and V, to exist, define
the low-resource subset M as the complement of I in V,, x V,,. M represents the set of low-resource
modalities and tasks where it is difficult to obtain labeled data. The focus of cross-modal generaliza-
tion is to learn a classifier in M as denoted by a dashed edge. In contrast to solid edges, the lack of
data in M incurs large error along dashed edges.

Therefore, the challenge in cross-modal generalization amounts to finding the path of lowest cumula-
tive error between an input target modality x; € V,, and output task y; € V;, in M. The key insight is



Strong pairs

red fish swimming o~ B .
in the water > I T e Classifier
(bmetl
horse galloping )
in the grass Meta-aligned
space
zebra standing
in a field B
‘,\‘.'
meta emeta
s t,
Weak pairs .. DI 4
Source e bR EEET =*" Target
encoder encoder

zebra standing

T T Ts T Ts T T
in a field AN Gl s s s Lt t
horse galloping e | 7;-,1 7;72 7?1,1 7?%2 7;,1
in the grass 2 Source tasks Alignment tasks || Target task
LT VA Ly
Meta-train Meta-test

Figure 4: While stron(gb%)airs (a) provide exact, one-to-one correspondencces across modalities, weak pairs (b)
represent coarse semantic groupings which better reflect many-to-many cross-modal mappings and leverage
weakly paired multimodal data available on the internet (e.g. videos, image captions). (¢) During meta-training,
meta-parameters €2, ey ¢™ are trained using source modality classification tasks 7 and alignment tasks

Ta. Meta-testing uses trained meta-parameters for few-shot generalization to target modality tasks 7.

to leverage cross-modal information to “bridge” modalities that are each labeled for only a subset of
tasks (see purple edges in Figure . We model cross-modal information as p(xs, ), i.e. alignment
between modalities x; and x;, where x is a source modality with high-resource data and labels
(xs,ys). When there is an abundance of paired data (xs, z;) (solid purple edge), we say that strong
alignment exists; otherwise, only weak alignment exits. Since strong alignment incurs negligible error
in estimating p(z, z; ), the alternative cross-modal path P = {(x,x5), (s, ys), (s, y¢) } might link
x; and y; with lower weighted error and is preferable to direct low-resource training for the dashed
edge (x¢,v¢). When only weak alignment is available, a trade-off emerges and one has to choose
between the error induced by direct low-resource training and the error induced by weak alignment.
(ys,y: ) models relationships across source and target tasks using approaches such as multi-task [7]]
or meta-learning [17]]. More formally,

Definition 2. Let p(zi,x;) be known for x; € Dy, , x; € Dy, and i # j. If both p(w;|z;)

and p(z;|x;) are delta distributions (i.e., one-to-one mapping between x; and x;), there is a
strong alignment between modality m; and m . Otherwise, there is only weak alignment.

We now show that strong alignment can achieve optimal generalization error for tasks in the low-
resource set M.

Proposition 1. (Benefit of strong alignment). Let all the modalities be pairwise strongly-aligned,
then we can define a surrogate loss function L[ f,,] such that L[arg max,, L[ f,]] = 0.

The proof is provided in Appendix[7. On the other hand, weak alignment may not provide perfect
generalization and we elucidate some conditions when it works in Section ??.

To summarize, cross-modal information p(z s, x;) allows us to bridge modalities that are each labeled
for only a subset of tasks and achieve generalization to new modalities and tasks in M. In the
following section, we explain an algorithm based on contrastive learning [18] to estimate p(x s, ¢ )
from data and meta-learning to model (ys, ¥ ).

4 CROMA: Cross-modal Meta-Alignment

Based on our theoretical insights, we propose a practical algorithm for cross-modal generalization
involving two thrusts: (1) learning a multimodal space via meta-alignment to model (z, x¢) (,
and (2) learning a cross-modal classifier to model (ys,y:) (@), which jointly enable generalization
to new modalities and tasks. We call our method CROMA, short for Cross-modal Meta-Alignment.

4.1 Meta-Alignment

We first simplify the problem by assuming access to strong pairs across modalities of the form
(xs, ;) which makes it easier to learn strong alignment (see Figure E(a)). At the same time, this
is not an excessively strong assumption: many multimodal datasets contain paired multimodal data
(e.g. activity recognition from audio and video [[1] and emotion recognition from text, speech, and
gestures [41,167]).



Algorithm 1 CROMA: Cross-modal Meta-Alignment

meta
s

and e*?, meta-classifier ¢™".

Initialize meta-alignment encoders e
for iteration=1,2,... do
Sample alignment task 7, with train D,

Initialize e := e e, := e]"™ and compute alignment loss (2)) on train data D[Ein.
Compute €, and ¢; after gradient updates using alignment loss wrt e and e;.

Update meta-alignment encoders €T « T 4 ¢(g; — M), e*? « MW 1 ¢(E; — efPe®).
Sample source modality task 7 with train DZ—;H and test data Dg; of pairs {zs,ys}.
Initialize ¢ := ¢™* and compute classification loss on train data D%, .

Compute ¢ after gradient updates using classification loss wrt ¢.

Update meta-classifier g™ « @™ + ¢(F — p™™),

Ta

train

and test data D¢, of pairs {z, z;}.

In practice, we model alignment by learning pg(z:|xs). However, directly learning a translation
model pg(x¢|zs) via MLE by mapping each z; to its corresponding x; is unlikely to work in practice
since = and z; are extremely high-dimensional and heterogeneous data sources which makes
reconstruction difficult [37]. Instead, we use Noise Contrastive Estimation (NCE) which learns a
binary classifier to distinguish paired samples (z,z¢) € D from unpaired negative samples x ncg,
which in the asymptotic limit is an unbiased estimator of p(z|x) [15] but is much easier in practice
than generating raw data.

However, the vanilla NCE objective does not handle new tasks at test time. We propose meta-
alignment to capture an aligned space (i.e. (xs, z;)) while ensuring quick generalization to new tasks
across different modalities (i.e. (ys, y:)). Meta-alignment trains encoders e, e; for source and target
modalities across multiple alignment tasks {7, 1, ..., 7o, } into an aligned space. Each alignment task
T, consists of paired data across source and target modalities. We explicitly train for generalization to
new tasks by training meta-alignment parameters e and e]*® that are used to initialize instances

of alignment models for new tasks [17]. When presented with a new task, we first initialize task

parameters using meta parameters e := €%, ¢, := e before training on the task by optimizing for
the NCE loss:
ﬁstrong align = Z —es(xs)Tet(act) + Z es(ms)Tet(mt,neg) . (2)
(xs,24)eTq Tt neg

where ; no, denotes unpaired negative samples. The NCE objective has a nice interpretation as
capturing a space where the representations of similar concepts expressed in different modalities
are close together, and different concepts in different modalities are far apart |18} 47]]. The meta-
parameters €™ and e{"*** are updated using first-order gradient information [43]] so that they gradually

become better initializations for new alignment tasks spanning new concepts.

Weak pairs: We now relax the data requirements from strong to weak pairs. Instead of one-to-one
correspondences, weak pairs represent coarse groupings of semantic correspondence (see Figured|b)).
This better reflects real-world multimodal data since cross-modal mappings are often many-to-many
(e.g. many ways of describing an image, many ways of speaking the same sentence), and are abundant
on the internet such as videos constituting weak pairs of image, audio, text [48}167]. We denote a
weak pair as sets X and X, and define contrastive loss with an expectation over pairs across the
sets (i.e. x5, ¢ € X x Xy) and call this weak alignment. We sample several x5 € X and x; € X; to
treat as paired samples, and obtain negative pairs & nee by sampling outside of the paired sets.

4.2 Cross-modal Generalization

Given a well-aligned space between modalities, we now train a single classifier parametrized by
a set of meta-parameters ¢™ on top of the aligned space for generalization across tasks (ys, ys ).
The joint set of classification tasks consists of tasks {7 1,..., T, } in the source modality and
tasks {7;.1,..., T, } in the target. When presented with a new task, we first initialize the classifier
using meta parameters ¢ := ¢™" before training on the task by optimizing for the cross-entropy
loss. The meta-parameters ¢™* are updated using first-order gradient information [43]] towards
better initialization parameters to classify new concepts. Overall, the meta-training stage consists of
alignment tasks 7, and classification tasks in the source modality 7. The meta-testing stage presents



tasks in the target modality 7;. Each task consists of k labeled pairs to simulate an episode of k-shot
learning. We show the full training algorithm in Algorithm[I]and a visual diagram in Figure [c).
During testing, a task 7; is sampled in the target modality. We initialize a new model with the trained
meta-alignment encoder ef"** and meta-classifier ¢™*, and perform gradient updates with the &
labeled samples in the target modality. Note that throughout the entire training process, only & labeled
samples in the target modality are presented to CROMA, which better reflects scarce target modalities
where even labeled data for different tasks is difficult to obtain.

S Experiments

We test generalization from text to image, image to audio, and text to speech classification tasks.
Anonymized code is included in the supplementary. Experimental details and additional results are
included in Appendix [8]and 9]

5.1 Datasets and Tasks

Text to Image Dataset: We use the Yummly-28K dataset [43]] which contains parallel text descrip-
tions and images of recipes. We create classification labels from the metadata by concatenating the
meal type and cuisine, yielding 44 distinct classes. The large number of recipes and shared concepts
between text and image makes it an ideal testbed for cross-modal generalization. We used a ResNet
pretrained on ImageNet [[11] to encode the images, pretrained BERT encoder [12] for text, and a
shared network for prediction.

Image to Audio Dataset: We combine two large unimodal classification datasets over images
(CIFAR-10 and CIFAR-100 [35]])) and audio made by various objects (ESC-50 [49]) with partially
related label spaces. This allows us to leverage complementary information from both modalities
while testing on new concepts. To obtain weak pairs, we map similar classes between the datasets
using similarities from WordNet [42] and text cooccurrence. This yields 17 unique clusters of weak
pairs (Appendix [8.2]lists all the clusters). We used a ResNet pretrained on ImageNet [11]] to encode
the images and a convolutional network pretrained on AudioSet [19] to encode audio [36}|52]].

Text to Speech Dataset: We use the Wilderness dataset, a large-scale multimodal dataset composed
of parallel multilingual text and speech data [S)]. We use a subset of 99 languages for language
classification from text (source) and speech (target) individually. The tasks are split such as there is
no overlap between the text and speech samples used for classification and the pairs seen for strong
alignment. We use LSTMs to encode both text and speech data.

Metrics: We report few-shot (k = 1, 5, 10) classification accuracy in the target modality by fixing 8
evaluation tasks, each comprised of 5 unseen target concepts during meta-test. We compute accuracy
across all 8 tasks and repeat experiments 10 times to report mean and standard deviations.

Baselines: We compare with 4 broad sets of baselines:

1) Unimodal baselines only use unlabeled data from the target modality during meta-training follow-
ing our low-resource assumption. The simplest baseline ignores meta-training and just fine-tunes on
the tasks in meta-test starting from a (supervised [3] or unsupervised [12]) pre-trained model. To bet-
ter leverage unlabeled target modality data, we also compare with unsupervised meta-learning [26]
which performs self-supervised learning via reconstruction or weak labels during meta-training (see

Appendix [8.2).

2) We modify Domain Adaptation (DA) methods to verify that it is necessary to use separate
encoders and perform explicit alignment: a) Shared shares all encoder layer for both modalities
except a separate linear layer that maps data from the target modality’s input dimension to the
source [29,/59]]. b) Shared + Align further adds our alignment loss (contrastive loss) on top of the
encoded representations, in a manner similar to [31]. ¢) Shared + Domain confusion further adds
a domain confusion loss on top of the encoded representations [60]. d) Shared + Target labels
also uses target modality labels during meta-training, similar to supervised DA [30] (details in
Appendix [10.2).

3) Cross-modal: We adapt domain adaptation and meta-learning for cross-modal generalization
under the following categories: a) Align + Classify which uses supervised alignment methods such as
adversarial learning [S9], cycle reconstruction [[L0, 24], or contrastive loss [62] to align input spaces
from multiple domains before training a shared classifier [S0]. b) Align + Meta Classify which learns
a shared space using standard supervised alignment [[18] before meta-learning a classifier [53]], and



Table 1: Performance on text to image generalization on Yummly-28K (top), image to audio concept classification
from CIFAR to ESC-50 (middle), and text to speech generalization on the Wilderness dataset (bottom). CROMA
is on par and sometimes outperforms the oracle target modality meta-learning approach that has seen thousands
of labeled target samples, and also outperforms existing unimodal, domain adaptation, and cross-modal baselines.
#Target (labels) denotes the number of target modality samples and labels used during meta-training.

TYPE APPROACH 1-SHOT  5-SHOT  10-SHOT #TARGET (LABELS)
Unimodal Pre-training [3}112] 33.1+£28 364+£3.5 49.0+£3.8 0(0)
Unsup. meta-learning [26] (reconstruct) || 37.4+0.6 41.7+3.7 49.0+1.0 5131(0)
Align + Classify [10, 241150, 591 162] 37130 40.0+27 478+66 5131(0)
Cross-modal  Align + Meta Classify [53] 39.4+25 40.0+2.3 488+7.8 5131(0)
CROMA (ours) 39.7+1.3 47.1+3.3 51.1+2.1 5131(0)
Oracle Within modality generalization [17,145] || 38.9+2.1 42.1+1.4 479+5.6 5131(5131)
Pre-training [3,12] 44.2+08 723+0.3 774+1.7 0(0)
Unimodal Unsup. meta-learning [26]] (reconstruct) || 36.3 +1.8 67.3+0.9 76.6+2.1 920(0)
Unsup. meta-learning [26] (weak labels) || 45.6 + 1.3 74.2+0.3 83.7+0.1 920(0)
Align + Classify [10, 24150159 162] 153:08 73.9+2.1 788%0.1 920(0)
Cross-modal  Align + Meta Classify [53]] 47.2+0.3 77.1+0.7 80.4+0.0 920(0)
CROMA (ours) 475+0.2 85.9+0.7 92.7+0.4 920(0)
Oracle Within modality generalization [17,145] || 45.9+0.2 89.3+0.4 94.5+0.3 920(920)
Unimodal Pre-training [3}12] 55.2+86 73.1+34 84.3+0.1 0(0)
Unsup. meta-learning [26] (reconstruct) || 61.5+4.4 83.5+4.0 88.5+2.1 4395(0)
Shared [29] 55.6+£10.2 75.2+84 81.9+3.9 4395(0)
Domain Shared + Align [31]] 59.7+76 784+6.2 84.3+1.5 4395(0)
Adaptation  Shared + Domain confusion [60] 59.5+7.2 76.3+9.4 83.9+1.8 4395(0)
Shared + Target labels [30] 57.3+9.3 76.2+84 84.0+1.9 4395(4395)
Align + Classify [101124115011591162] 61.1+6.0 74.8+2.1 86.2+0.7 4395(0)
Cross-modal  Align + Meta Classify [53] 65.6+6.1 89.9+1.5 93.0+£0.5 4395(0)
CROMA (ours) 67.9+6.6 90.6+1.5 93.2+0.2 4395(0)
Oracle Within modality generalization [17,145] [[61.3+11.2 77.0+0.3 87.5+0.6 4395(4395)

Table 2: Language classification predictions on low-resource speech samples after training on labeled text data.
Despite seeing just 5 labeled speech samples, our method is able to accurately classify low-resource languages.

SPEECH (TEXT IN PARENTHESIS) ORACLE OURS
(Beda Yesus agot gu ofa oida Bua buroru Didif ojgomu) Russian Meax
(Ido hai Timotiu natile hampai moula Aturana Musa) Uamaican Patois Badaic
(Mu habotu pa kali Mataoqu osolae vekoi Rau sari Mua kana pa kauru Nenemu gua)|| Avokaya  Roviana

¢) CROMA which represents our full model of jointly training for generalization across alignment
and classification tasks. Since all methods are agnostic to the specific alignment algorithm used, we
use contrastive loss with negative sampling as described in Section [.T|for fair comparison across all
baselines.

4) Oracle: The ideal (but likely unrealistic) scenario where meta-training and meta-testing both
have labeled data in the target modality. We use the Reptile algorithm [45] for target modality meta-
learning. Since there is the least domain shift, we expect this method to perform best but with the
requirement of large amounts of labeled target data.

5.2 Cross-modal Generalization

Comparison to oracle: For text to image (Tableﬂ]top) and text to speech (Tableﬂ]bottom), CROMA
surprisingly outperforms even the oracle baseline, in addition to unimodal and cross-modal methods.
We hypothesize this is because text data (source) is cleaner than image and speech data (target) and
the community has better models for encoding text than images and speech spectrograms. Consistent
with this hypothesis, we found that text classifiers performed better on Yummly-28K and Wilderness
datasets than image and speech classifiers. This implies that one can leverage abundant, cleaner,
and more-predictive source modalities to improve target modality performance. For image to
audio (Table Emiddle), we observe that our cross-modal approach is on par (outperforms for k = 1,
and within 2 — 3% for k = 5, 10) with the oracle baseline that has seen a thousand labeled audio
examples during meta-training.
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scallions, cut into 1-inch pieces, 1
jalapefio, seeded and minced, 1/4
cup cider vinegar, ...

1/4 head red cabbage, 2 carrots, ?

L

Figure 6: Left: samples of retrieved images given text recipes. CROMA performs few-shot retrieval of images
more accurately than existing alignment approaches. Right: samples of retrieved audio samples given images.

Despite being trained only on weak pairs, meta-alignment can perform few-shot cross-modal retrieval at fine
granularities (e.g. amphibian, automobile).

(Car) ” (Engine)

Comparison to existing approaches: For all setups, CROMA consistently outperforms existing
unimodal and cross-modal baselines. Since we use the same LSTM architecture for both text and
speech, we can also apply DA approaches which share encoders. From Table[I bottom, we see that
they do not perform well on cross-modal generalization. Although domain confusion and alignment
improve upon standard encoder sharing, they still fall short of our approach. Our method also
outperforms the Shared + Target labels baseline which further uses target modality labels to train
the shared encoder during meta-training. This serves to highlight the important differences between
cross-modal generalization and domain adaptation: 1. separate encoders and 2. explicit alignment
are important.

Ablation studies: Consistent across all setups in Table|1, we find that jointly meta-training across
alignment and classification improves upon standard supervised alignment methods commonly used
in domain adaptation [30, [33]. We find that performance improvement is greatest for the 1-shot
setting, suggesting that meta-alignment is particularly suitable for low-resource target modalities.

Model predictions: We show some samples
of language classification predictions on low-
resource speech samples in Table[2] Despite see-
ing just 5 labeled speech samples, our method
is able to quickly generalize and classify low-
resource languages. On the text to image task
(Figure[5), CROMA also quickly recognizes im-
ages from new recipes.

American salads:
side dishes

Mexican:
soups

Figure 5: On Yummly-28K dataset, CROMA leverages
source text modality to make accurate few-shot predic-
tions on target image modality despite only seeing 1—-10
labeled image examples.

Barbecue:
main dishes

5.3 Few-shot Cross-modal Retrieval

In Figure[6, we also show samples of retrieved data in the target given input in the source modality
to help us understand which source modalities the model is basing its target predictions on. Despite
being trained only on weak pairs, meta-alignment is able to perform cross-modal retrieval at fine
granularities.

10
5.4 Noisy Target Labels _ 0

We also evaluate the effect of noisy labels in the target modality € g,

since it is often difficult to obtain exact labels in low-resource g
modalities such as rare languages. To simulate label noise, we §

add symmetric noise to all target modality labels (both s
meta-train and meta-test). Despite only seeing £ = 1,5,10 5 >

labels in the target, CROMA is more robust to noisy label ° 49

than the oracle baseline (see Figure /7). 30001 o2 03 04 o5 s
target modality label noise rate

6 Conclusion

In this work, we proposed cross-modal generalization: a learn-
ing paradigm where abundant source modalities are used to help
low-resource target modalities. We showed that meta-alignment
using cross-modal data can allow quick generalization to new
concepts across different modalities. Our experiments demon-
strate strong performance on classifying data from an entirely
new target modality under limited samples and noisy labels, which is particularly useful for general-
ization to low-resource images, speech, and languages.

Figure 7: CROMA is robust to noisy
labels in the target modality by us-
ing cross-modal information from the
source, making it suitable for low-
resource modalities with imperfect an-
notations.
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