
HyperVAE: Variational Hyper-Encoding Network

Phuoc Nguyen∗
phuoc.nguyen@deakin.edu.au

Truyen Tran∗
truyen.tran@deakin.edu.au

Sunil Gupta∗
sunil.gupta@deakin.edu.au

Santu Rana∗
santu.rana@deakin.edu.au

Hieu-Chi Dam†
dam@jaist.ac.jp

Svetha Venkatesh∗
svetha.venkatesh@deakin.edu.au

We propose a framework called HyperVAE for encoding distributions of distributions. When a
target distribution is modeled by a VAE, its neural network parameters θ are drawn from a distribution
p(θ) which is modeled by a hyper-level VAE. Given a target distribution, we predict the posterior
distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution
q(θ). HyperVAE can encode the parameters θ in full in contrast to common hyper-networks practices,
which generate only the scale and bias vectors to modify the target-network parameters. Thus
HyperVAE preserves information about the model for each task in the latent space. We evaluate
HyperVAE in density estimation tasks, outlier detection and discovery of novel design classes.

1 Introduction
Humans can extract meta knowledge across tasks such that when presented with an unseen task

they can use this meta knowledge, adapt it to the new context and quickly solve the new task. Recent
advance in meta-learning [3, 4, 6, 8, 5] shows that it is possible to learn a single model such that
when presented with a new task, it can quickly adapt to the new distribution and accurately classify
unseen test points.

Hyper-networks [9] can generate the weights for a target network given a set of embedding vectors
of those weights. Due to its generative advantage, it can be used to generate a distribution of
parameters for a target network [9, 11]. In practice, due to the high dimensional parameter space, it
only generates scaling factors and biases for the target network. This poses a problem that the weight
embedding vectors only encode partial information about the target task, and thus are not guaranteed
to perform well on unseen tasks.

On the other hand, variational autoencoders (VAEs) [10, 14] is a class of deep generative models
that can model complex distributions. A major attractive feature of VAEs is that we can draw from
simple, low-dimensional distributions (such as isotropic Gaussians), and the model will generate
high-dimensional data instantly without going through expensive procedures like those in the classic
MCMC. This suggests VAEs can be highly useful for high dimensional design exploration [7]. In
this work, we lift this idea to one more abstraction level, that is, using a hyper VAE to generate VAE
models. While the VAEs work at the individual design level, the hyper VAE works at the class level.
This permits far more flexibility in exploration, because not only we can explore designs within a
class, we can explore multiple classes. The main insight here is that the model parameters can also
be treated as a design in a model design space. Hence, we can generate the model parameters using
another VAE given some latent low-dimensional variable.

We propose HyperVAE, a novel class of VAEs, as a powerful deep generative model to learn
to generate the parameters of VAE networks for modeling the distribution of different tasks. The
versatility of the HyperVAE to produce VAE models allows it to be applied for a variety of problems
where model flexibility is required, including density estimation, outlier detection, and novelty seeking.
∗A2I2, Deakin University, Geelong, Australia
†Japan Advanced Institute of Science and Technology

4th Workshop on Meta-Learning at NeurIPS 2020, Vancouver, Canada.

For the latter, since HyperVAE enforces a smooth transition in the model family, interpolating in this
space will enable us to extrapolate to models of new tasks which are close to trained tasks. Thus as
global search techniques can guide the generation of latent spaces of VAEs, search enables HyperVAE
to produce novel classes of discovery. We use Bayesian Optimization (BO) [17], to search in the low
dimensional encoding space of VAE. Once a low dimensional design is suggested, we can decode it
to the corresponding high dimensional design.

2 Related Work
The most related work to our method is MetaVAE [1]. In MetaVAE, meta learning of VAE is

done by shared encoder, however the decoder is task specific. Making it incomplete for a new task.
Require data to train the decoder in contrast to HyperVAE which use amortized VI and hypernet to
generate the parameters for the decoder. The posterior is also by amortized variational inference. As
a result, it is different from ours in the target and modeling, where the latent z is factored into data
latent variable z and the task latent variable u.

HyperVAE is related to Bayesian VAE [2], where the model is also a random variable generated
from some hyper-prior. Bayesian VAE rely on MCMC instead of VAE which makes it limited in the
prior representation. HyperVAE have a more flexible prior by using a hyper-level VAE. There has
been some work on priors of VAE [12, 18], but using VAE as a prior for VAE is new.

HyperGAN [13] is a recent attempt to generate the parameters of model for classification. This
framework generates all parameters from a single low dimension Gaussian noise vector. Bayesian
neural networks (BNN) in [20] also use GAN framework for generating network parameters θ that
looks real similar to one drawn from BNN trained with stochastic gradient Langevin dynamics.
However, GAN is not very successful for exploration but more for generating realistic samples. In
this work, we extend hypernetworks [9] to the VAE domain and treat the embedding vectors of
hypernets as random latent variables to generate weights for the VAEs, thus variationally encoding
the VAE networks and using sampling instead of backpropagation for meta learning.

3 Preliminaries
Let x denote an X -value random variable associated with a Z-value random variable z through

a joint distribution p(x, z). We consider a parametric family P of generative models p(x, z; θ)
factorized as a conditional p(x|z; θ) and a simple prior p(z), usually chosen as N (0, I). Maximum
likelihood estimate (MLE) of θ ∈ Θ, where Θ is the parameter space, over the marginal log p(x; θ) =
log
∫
p(x, z; θ)dz is intractable, thus requiring alternatives such as expectation-maximization and

variational inference. VAE is an amortized variational inference approach that jointly learns the
generative model p(x|z; θ) and a variational inference model q(z|x; θ)3. The evidence lower bound
(ELBO) of the the marginal log-likelihood is:

L(x, p, q; θ) = Eq(z|x;θ) log p(x|z; θ)− KL (q(z|x; θ)‖p(z)) (1)

In practice, Monte Carlo estimator of the ELBO’s gradient is used to update the parameters θ. The
form of q and p in Eq. 1 makes an encoder and a decoder, hence the name auto-encoder [10]. MLE
of a single θ maximizing the above objective is susceptible to overfitting, especially when θ ∈ Θ is
high dimensional.

4 Variational Hyper-Encoding Networks (HyperVAE)
We consider a meta learning setting where there is a sequence of datasets (or tasks) we wish to

model quickly by a sequence of model parameters. Let assume a set of T distributions {Dt}Tt=1
called tasks, each containing samples x ∼ pDt(x), our problem is first fitting each parametric model
p(x; θt), parameterized by θt ∈ Θ, to each Dt:

θ̂t = argmax
θ∈Θ

p(Dt; θ) (2)

then fitting a parametric model p(θ; γ), parameterized by γ ∈ Γ to the set {θ̂t}Tt=1. However, there
are major drawbacks to this approach. First, the number of tasks may be insufficient to fit a large
enough number of θt for fitting p(θ; γ). Second, although we may resample Dt and refit θt to create
more samples, it is computationally expensive.

3We use θ = (θp, θq) to denote the set of parameters for p and q.

2

x
N

zu

θ

T

γ x
N

zu

θ

T

γ x
N

zu

θ

T

γ

D

(a) Generation (b) Inference of z (c) Inference of u

Figure 1: HyperVAE graphical model. D = {xn}Nn=1.

A more practical approach is to jointly learn the distribution of θ and D. Let the joint distribution
be p(θ,D; γ) for some parameters γ4. We propose a framework for this problem called HyperVAE as
depicted in Fig. 1 (b). The main insight here is that the VAE model parameters θ ∈ Θ can also be
treated as a normal input in the parameter space Θ. Hence, we can generate the model parameters θ
using another VAE at the hyper level whose generative process is pγ(θ|u) for some low-dimensional
latent variable u ∼ p(u) ≡ N (0, I), the prior distribution defined over the latent manifold U of Θ.
The joint distribution p(θ,D; γ) can be expressed as the marginal over the latent representation u:

p(θ,D) =

∫
p(θ,D|u)p(u)du =

∫
p(D|θ)p(θ|u)p(u)du (3)

The generation of a random data point x is as follows, c.f. , Fig. 1 (a):

θt ∼ pγ(θ | ut), ut ∼ N(0, I)

x ∼ pθt(x | z), z ∼ N(0, I)

The inference of z given x and θ, Fig. 1 (b), is approximated by a Gaussian distribution, q(z|x, θ) =
N (z|µθ(x), σ2

θ(x)), where µθ and σ2
θ are neural networks generating the mean and variance parameter

vectors.
The inference of u (Fig. 1 (c)) is also approximated by a Gaussian distribution q(u|D, θ) =

N (u|µ(dt), σ
2(dt)) parameterized by neural networks µ(.) and σ2(.). We approximate q(u|D, θ) ≈

q(u|D). The next problem is that since Dt is a set, q(u|Dt) is a function of set. Here we use a simple
method to summarize Dt into a vector, dt = s(Dt), and this turns q(u|Dt) into q(u|dt). For example,
s(·) can be a mean function, a random draw from the set, or a description of the set. In this study, we
simply choose a random draw x from the set Dt.

4.1 Training objective for HyperVAE
We use the minimum description length (MDL) principle [15, 16] to derive the training objective

for HyperVAE. Under the crude 2-part code MDL, the expected code length for transmitting a dataset
D and the model parameters θ for Eq. 2 is L(D) = L(D|θ)+L(θ), where L(D|θ) = − logP (D; θ)5

is the code length of data given the model θ, and L(θ) = − logP (θ) is the code length of the model
itself.

Under the HyperVAE the code length of D is:

L(D) = L(D|θ) + L(θ|u) + L(u) (4)
= L(D|θ(u)) + L(u) (5)

where we choose a Dirac delta distribution for θ, p(θ|u) = δ(θ(u)). Using bits-back coding, this code
length should be shorter by exploiting the fact that the choice of u can carry additional information
up to the entropy of the variational posterior distribution q(u|D) [19]. The expected code length for
u over q(u|D)6 is then:

L(u) = E [− logP (u) + logQ(u|D)] = E
[
log

q(u|D)ε

p(u)ε

]
= KL(q(u|D)‖p(u)) (6)

4We assume a Dirac delta distribution for γ, i.e. a point estimate, in this study.
5Let assume we can discretize the continuous distribution p into a discrete distributions P , P (X) = p(x)ε,

where ε is the discretization precision.
6Assumingq is discretized into Q similarly to p

3

The final expected code length of D in HyperVAE is then:

L(D) = Eq(u|D) [L (D|θ(u))] + KL (q(u|D)‖p(u)) (7)
We train the HyperVAE parameters by minimizing the description length in Eq. 7. The description

length of a dataset D = {xi}|D|i=1 is the summation of the description length of every data point in
it, L (D|θ(u)) =

∑|D|
i=1 L (xi|θ(u)). Application of the bits-back coding argument to each L (xi|θ)

gives:

L (xi|θ) = Eqθ(z|xi) [L (xi|z, θ)] + KL (qθ(z|xi)‖p(z)) (8)
where we ignored the dependence of θ on u to avoid clutter. Substitute Eq. 8 into Eq. 7 we obtain the
training objective for HyperVAE as follows:

L(D) = Eq(u|D)

 |D|∑
i=1

Eqθ(u)(z|x)

[
L (xi|z, θ(u)) + KL

(
qθ(u)(z|xi)‖p(z)

)]+ KL (q(u|D)‖p(u))

In our experiment, we scale down this objective by multiplying it by 1/|D| to have a similar scale
as a normal VAE’s objective. In practice, the number of tasks is too small to adequately train the
hyper-parameters γ. Here we simulate tasks using data mini-batches in the typical stochastic gradient
learning. That is, each mini-batch is treated as a task. To qualify as a task, each mini-batch needs to
come from the same class. For example, for handwritten digits, the class is the digit label.

Since neural networks weights are matrices that are highly structured and often overparameterized,
we use an efficient matrix network to decode the weights. More concretely, a matrix hyper-layer
receives an input matrix H and computes a weight matrix W as W = σ(UHV +B), where U, V,B
are parameters. As an example, if H is a 1D matrix of size 400× 1 and a target weight W of size
400× 400, a matrix-layer will require 176 thousand parameters, a 3 order of magnitude reduction
from 64.16 million parameters of the standard fully-connected hyper-layer.

4.2 Applications
Density estimation After training, HyperVAE can be used to estimate the density of a new
dataset/task. Let Dt be the new task data. We first infer the posterior distribution q(u|Dt) ≈
q(u|dt) = N (u|µ(dt), σ

2(dt)), where dt is a summary of Dt, which we choose as random in this
study. Next we select the mean of this posterior distribution and decode it into θ using pγ(θ|u). We
use this θ to create the main VAE for Dt then use importance sampling to estimate the density of
x ∈ Dt.

Outlier detection Similar to the density estimation application above, we first encode a test vector
xt into a latent distribution q(u|xt) then decode its mean vector into θt to create a VAE model. We
then use the description length of xt, c.f. Eq. 8, under this VAE as the outlier score. Our assumption
is that outliers are unseen to the trained model, thus incompressible under this model and should have
longer description lengths.

Novelty discovery HyperVAE provides an extra dimension for exploring the model space Θ in
addition to exploring the design space X . Once trained, the network can guide exploration of new
VAE models for new tasks with certain similarity to the trained tasks. Given no prior information, we
can freely draw models θ(u) from u ∼ p(u) and designs x ∼ pθ(x|z) with z ∼ pθ(u)(z) and search
for the desired x∗ satisfying some property F (x∗). An intuitive approach is to employ a global search
technique such as Bayesian Optimization (BO) in both the model latent space of u and in the data
latent space of z. The search process for the optimal design at step t = 1, 2, ..., T is as follows:

ut ∼ q(u | dt−1); θt = gγ(ut);

z∗ ← BO(gθt(z)); x∗t ← g(z∗). (9)
where dt−1 ← x∗t−1. The optimization step in the z space maximizes a function maxxF (x) =
maxz F ◦ gθt(z) for a fixed generator θt. Let z∗t and thus x∗t = gθt−1

(z∗t−1) be the solution found
at step t. The generator parameter in the subsequent step is set as θt ← θ (µ(x∗t)) where µ is the
posterior mean.

5 Experiments
We use MNIST handwritten digits, Omniglot handwritten characters, and Fashion MNIST. In these

three datasets, the images are statically binarized to have pixel values in {0, 1}.

4

Model settings We use a similar architecture for the encoder and decoder of all VAE in all datasets.
The encoder has 2 convolution layers with 32 and 64 filters of size 3 × 3, stride 2, followed by
one dense layer with 100 hidden units, then two parallel dense layers to output the mean and log
variance of q(z|x; θ). The decoder architecture exactly reverses that of the encoder to map from z
to x, with transposed convolution layers in place of convolution layers, and outputs the Bernoulli
mean of p(x|z; θ). We also use a similar architecture for HyperVAE in all datasets. The encoder
uses the same architecture as the VAE’s encoder. The decoder use a dense layer with 100 hidden
units, followed by L parallel matrix layers generating the weights, biases, and filters of the main VAE
network, resembling the parameter θ. The input to the matrix layer is reshaped into size 20 × 20.
All layers except the last layer use RELU activation. The z-dimension and u-dimension is 10 for all
datasets. We used Adam optimizer with parameters β1 = 0.9, β2 = 0.999, learning rate η = 0.0003,
minibatches of size 100, and ran for 10000 iterations or when the models converge.

5.1 Model behavior
We study whether the HyperVAE learns a meaningful latent representation and data distribution for

the MNIST and Omniglot datasets. We use negative log-likelihood (NLL) and KL(q(z|x)‖p(z)) as
measures. NLL is calculated using importance sampling with 1024 samples. We compare VAE and
HyperVAE in Table 1, and as seen the HyperVAE outperforms the VAE on NLL on MNIST dataset
and on NLL and KL on Omniglot dataset.

Table 1: Negative ELBO (-EL), negative log-likelihood (-LL), KL(q(z|x)‖p(z)), and
KL(q(u|x)‖p(u)) (u). Smaller values are better.

MNIST Omniglot Fashion MNIST
-EL -LL KL -EL -LL KL -EL -LL KL

VAE 118.2 99.4 18.8 128.6 111.4 17.1 252.2 237.7 14.5
MetaVAE 108.6 93.0 15.5 141.1 128.1 13.2 245.2 232.7 13.7

HyperVAE 106.8 88.2 18.5 124.7 105.5 18.1 245.7 231.8 13.9
5.7 (u) 2.7 (u) 0.4 (u)

Table 2 compares the number of parameters between networks. Note that while MetaVAE shares
the same inference network for all tasks, it needs a separate generative network for each task. For
HyperVAE, the trainable parameters are from the hyper level VAE, whereas the main VAE network
of each task obtains its parameters by sampling from the HyperVAE network.

Table 2: Number of parameters (thousands) of the methods.

Inference network Generative network Total
VAE 445 445 890

MetaVAE 445 445×#task 445 + 445×#task
HyperVAE 445 445 890

Overfitting VAE is trained on the combined dataset therefore it is less affected by overfitting due
to high variance in the data. Whereas MetaVAE is more susceptible to overfitting when the number
of examples in the target task is small, which is the case for Omniglot dataset, c.f. Table 1. While
the training of MetaVAE’s encoder is amortized across all datasets, the training of its decoder is
task-specific. As a result, when a (new) task has a small number of examples, the low variance data
causes overfitting to this task’s decoder. Therefore MetaVAE is not suitable for transfer learning to
new/unseen tasks. HyperVAE can avoid overfitting by taking a Bayesian approach and using the
MDL principle for regularization.

HyperVAE complexity The algorithmic complexity of HyperVAE is just double that of VAE since
it is a VAE of VAE. Specifically, it runs the VAE at the hyper level to sample a weight parameter θ,
then it runs the VAE to reconstruct a set of inputs given this parameter θ. The weight generation
network generates each weight matrix and bias vector at a time at its last layer. Therefore, the time
complexity of the hyper generation network is O((Lhyper + LVAE)H), where Lhyper and LVAE are the
number of layers of the hyper and the primary generation networks respectively, and H is the average
hidden size of the layers.

5

5.2 Robust outlier detection
Next, we study HyperVAE model for outlier detection tasks. We use three datasets: MNIST,

Omniglot, and Fashion MNIST to create three outlier detection experiments. For each experiment,
we select one dataset as the normal class and 20% random samples from another dataset as outliers.
All methods are trained on only normal data.

VAE and HyperVAE use the negative ELBO for calculating the outlier score, since the description
length in Eq. 8 is equivalent to the negative ELBO. MetaVAE does not have a generative network
for new data. Therefore we use two scoring methods: (1) KL divergence, and (2) mean negative
ELBO using all trained generative networks. For training MetaVAE and HyperVAE, we define the
task as before, i.e. the data in each task have a similar class label. Table 3 compares the performance
of all methods on the three datasets. Overall, HyperVAE has better AUCs compared to VAE and
MetaVAE. The MetaVAE has the lowest AUC. This could be due to the use of a discrete set of
generative networks for each task, making it unable to handle new, unlabeled data.

While the false positive rates of VAE and HyperVAE models are similar, the false negative rates
for HyperVAE are lower than that of VAE. This is because HyperVAE was trained across tasks, thus
it has a better support between tasks.

Table 3: Outlier detection on MNIST. AUC: Area Under ROC Curve, FPR: False Positive Rate, FNR:
False Negative Rate, KL: KL divergence, -EL: mean negative ELBO.

MNIST Omniglot Fashion MNIST
AUC FPR FNR AUC FPR FNR AUC FPR FNR

VAE 93.0 16.3 15.5 98.3 5.5 6.4 74.6 33.5 32.0
MetaVAE (KL) 54.7 47.5 45.0 87.3 18.8 20.9 58.2 44.1 43.5

MetaVAE (−EL) 52.2 49.4 50.5 97.5 7.2 9.0 56.8 45.8 44.5
HyperVAE 95.3 15.6 8.0 98.7 4.9 5.9 76.8 33.6 28.7

5.3 Novelty discovery
We demonstrate the effectiveness of HyperVAE+BO for finding realistic designs close to an ideal

design, which lies outside known design classes. The performance measure is how close we get to
the given ideal design, as measured in cosine distance for simplicity.

In each of the following two experiments, the BO objective is to search for a novel unseen design
x∗, an unseen digit or alloy, by maximizing a Cosine distance F (x∗). The maximum number of BO
iterations is set to 300 and the search space is [−5, 5] for each z and u dimension.
5.3.1 Digit discovery

Novel digit 1 2 3 4 5 6 7 8 9 0

VAE

HyperVAE

Figure 2: Best digits found at iterative steps in searching for a new class of digits.

This experiment illustrates the capability of HyperVAE+BO in novel exploration on MNIST. For
each experiment, one digit is held out. We used nine digit classes for training and tested the model
ability to search for high quality digits of the remaining unseen digit class. BO is applied to search
for new digits that are similar to a given new exemplar in the z-space.

In the iterative process, an empty image d1 = 0 is given at the first step, and subsequently updated
as dt = x∗t−1. After each step t we set ut = µ(x∗t). Examples of discovery process are listed in
Fig. 2. The figures show that VAE has a very limited capability to support exploration outside the
known regions, while HyperVAE is much more flexible, even without the iterative process (#Step =
1). With more iterative refinements, the quality of the explored samples improves.

6

References
[1] Kristy Choi, Mike Wu, Noah Goodman, and Stefano Ermon. Meta-amortized variational

inference and learning. arXiv preprint arXiv:1902.01950, 2019.

[2] Erik Daxberger and José Miguel Hernández-Lobato. Bayesian variational autoencoders for
unsupervised out-of-distribution detection. arXiv preprint arXiv:1912.05651, 2019.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[4] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and
gradient descent can approximate any learning algorithm. ICLR, 2018.

[5] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning.
arXiv preprint arXiv:1902.08438, 2019.

[6] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Advances in Neural Information Processing Systems, pages 9516–9527, 2018.

[7] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

[8] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
gradient-based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

[9] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[11] David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv preprint arXiv:1710.04759, 2017.

[12] Hung Le, Truyen Tran, Thin Nguyen, and Svetha Venkatesh. Variational memory encoder-
decoder. In NeurIPS, 2018.

[13] Neale Ratzlaff and Li Fuxin. HyperGAN: A Generative Model for Diverse, Performant Neural
Networks. ICML, 2019.

[14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[15] Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[16] Jorma Rissanen. Information and complexity in statistical modeling. Springer Science &
Business Media, 2007.

[17] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

[18] Jakub M Tomczak and Max Welling. VAE with a VampPrior. arXiv preprint arXiv:1705.07120,
2017.

[19] James Townsend, Tom Bird, and David Barber. Practical lossless compression with latent
variables using bits back coding. arXiv preprint arXiv:1901.04866, 2019.

[20] Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard Zemel. Ad-
versarial distillation of bayesian neural network posteriors. In International Conference on
Machine Learning, pages 5177–5186, 2018.

7

	Introduction
	Related Work
	Preliminaries
	Variational Hyper-Encoding Networks (HyperVAE)
	Training objective for HyperVAE
	Applications

	Experiments
	Model behavior
	Robust outlier detection
	Novelty discovery
	Digit discovery

