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Abstract

Neural networks are capable of learning complex functions, but still have problems
generalizing from few examples and beyond their training distribution. Meta-
learning provides a paradigm to train networks to learn from few examples, but
it has been shown that its most popular benchmarks require very limited general-
ization capabilities. Program induction lies at the opposite end of the spectrum:
programs are capable of extrapolating from very few examples, but we still do
not know how to efficiently search for complex programs. We propose a common
benchmark for both communities, measuring extrapolation from few examples
coming from the execution of small programs. These are obtained by leveraging
a C++ interpreter on codes from programming competitions; extracting small
sub-codes with their corresponding input-output pairs. Statistical analysis and
preliminary human experiments show the potential of this benchmark for enabling
progress in few-shot extrapolation.

1 Introduction and motivation

Despite their great successes learning complex functions, neural networks still require large amounts
of data and have trouble generalizing beyond their training distribution. In contrast, program
induction lies at the opposite end of both spectrums: we can infer programs from few examples that
extrapolate far beyond the training samples, but these programs are typically very simple. As a field,
we’re trying to find the best of both worlds: learning complex functions that generalize broadly from
few examples.

Program induction has seen a lot of growing interest, but there is also a lack of large-scale few-shot
program induction benchmarks. Most datasets are manually created by a small team of researchers;
this creates biases, often assumes a very specific Domain Specific Language (DSL) and limits the
number of total tasks to a few hundreds. There is also, to the best of our knowledge, no benchmark
that allows testing a broad spectrum of program complexity, from 1-line programs to 100-line
implementations requiring algorithmic insights. In this work, we present a benchmark containing
such a spectrum of problems, with the hope that it provides a useful target both now and in the coming
years.

We propose to create a wide range of tasks, ranging from simple one-line programs to complex
algorithmic implementations, by extracting sub-codes from codes online. More concretely, we
leverage a database coming from the popular website codeforces.com, which has hundreds of
problems and hundreds of thousands of implementations. From these, we can extract tens of thousands
different sub-codes, each describing its own task. We can obtain input-output examples for each code
by running the entire program on a set of inputs and recording the input-output example for each
sub-code. C++ is, by far, the most popular language in these competitions. C++ has the advantage of
being typed and structured, which, as we will see, allows us to more easily categorize and analyze the
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difficulty of problems. At the same time, C++ is also compiled, which makes it quite hard to collect
the evaluation of sub-codes, since that requires running C++ as an interpreted language. Despite this
difficulty, we manage to obtain such evaluations for a broad subset of the codes, which allows us to
create a rich, diverse meta-dataset with over 10,000 tasks.

Our main contribution is therefore a few-shot benchmark for the meta-learning and program induction
communities with the following key aspects:

1. The dataset is automated, allowing us to scale to more than ten thousand real-world
tasks and removing some of the biases of manually created datasets. At the same time,
tasks are not random, each coming from a solution to a task similar to those given in tech
interviews.

2. Problems have an accompanying solution in the form of a code, which can also function
as a target for methods that are learning to search in program induction. Solutions also
provide auxiliary information to guide meta-learning and provide an extra layer of structure,
which is not typically part of traditional few-shot learning benchmarks.

3. Tasks have a diverse range of difficulty and can be classified into many different
groups: from their type signatures, to whether the program that generated them had loops,
or its number of lines.

2 Related work

Related work on the meta-learning community can be found in appendix A.

Program induction datasets There have been a number of program induction benchmarks, such
as those used in DreamCoder [1], and FlashFill [2, 3], as well as the Abstract Reasoning Chal-
lenge(ARC) [4], a list functions benchmark [5], or the SyGus competition [6]. Although these
benchmarks contain many interesting problems, they have been manually created by humans instead
of being automatically generated from natural data. This creates significant bias on the datasetsand
restricts the amount of tasks to a few hundreds to a bit more than a thousand tasks. In contrast, our
benchmark contains more than 6,000 tasks and we estimate we will be able to extend it to around
100k. Such large datasets have been shown to be useful to learn to search [7]; however, in contrast to
this work, our programs are not random, and can thus capture the structure of real programs.

Datasets leveraging competitive programming codes We take the programs scraped by [8] and
Dr.Repair [9] from codeforces.com. However, their goals are significantly different from ours.
Whereas we make the tasks easier by considering sub-codes and creating thousands of few-shot learn-
ing tasks, they learn to go from line-by-line pseudo-code to code [8] or learn to debug programs [9].
Even though the origin of the data is the same, our end-product is orthogonal to theirs. [10] is
probably closest to our benchmark, manually describing the function of a bit more than 2000 codes
with a problem statement. There are two problems with this approach: first, since it is much easier
to describe what the code does than defining a task that the code solves, most statements resemble
pseudo-code, which turns the task into something closer to translation. Second, because codes are
manually annotated, it is hard to scale to tens of thousands of tasks.

3 Description of the dataset

3.1 Structure of the data

In competitive programming there are different problems, each with a short text describing the
requirements of the target program. There are also multiple test-cases (some public, some private)
that the submitted program has to satisfy. For each problem we have many hundreds of codes that
solve it; meaning we have a pair of (code, test-cases) such that the entire code satisfies the test-cases.

For each code we can obtain sub-codes: valid continuous segments of code contained in the original
code. To be valid, a sub-code has to be correctly parenthetised: start and end at the same level of
indentation and never go to a level above than the starting one in the indentation hierarchy.

Given a sub-code we can generate the data for a task; consisting of 20 input-output pairs (10 training,
10 test). We obtain these by running the entire code and observing the intermediate values at every
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Figure 1: Examples of two (relatively simple) tasks coming from programs in our (meta-)dataset.
Each task consists of 10 training input-output pairs, 10 test input-output pairs and a program that
solves them and extrapolates to other inputs.

line. Therefore, a task consists of: (1) a type signature describing the types of inputs and outputs, (2)
20 pairs of input-outputs examples, 10 for training and 10 for test, (3) a code that solves these pairs
and extrapolates to other inputs. Note that the input distribution is far from random, as it is affected
by previous computations in the overall program. Figure 1 shows the example of two tasks.

3.2 Overview of the implementation

In this section we provide an overview of how we obtained the data. This helps provide a better
understanding on the data distribution, explaining how we obtain the input-output pairs as well as
some limitations of our pipeline(further explained in appendix B), which constrain some of the
problems in our dataset. We obtain the original raw codes from SPoC and DrRepair [8, 9], which
scraped codeforces.com. This gives us around 300,000 codes to 700+ programming problems.

To interpret C++ we use the Cling C++ interpreter [11]. Cling performs an elaborate incremental
just-in-time compilation that keeps modifying the abstract syntax tree before executing the new piece
of code. This allows us to execute pieces of code and check the values of variables in between. Since
they have to be compiled, the given pieces of code have to be self-contained: functions have to be
defined entirely before being fed to Cling and loops and if statements have to be given as a block.
This severely restricts the type of sub-codes that we can obtain with raw Cling, since we cannot
inspect the intermediate values within loops or functions.

We implement a work-around to be able to obtain intermediate values for loops and if statements.
First, we standardize all codes changing for loops to while loops plus extra instructions and ensure all
loops and if statements are properly bracketed. Once this processing is done, we create an emulator
that, instead of feeding the entire while/if statement to Cling, it first calls its condition and then
calls the appropriate code depending on whether the condition is satisfied. Note that these if/while
conditionals are often very interesting quantities, and we also include them as tasks even though there
is no explicit boolean variable created in the original code.

Competitive programming codes interact with the terminal, receiving inputs and outputting the result.
Cling cannot handle console input or output; we therefore implement a wrapper that simulates this
communication. Since console outputs also often contain interesting results, we also store them as
program outputs. Furthermore, whenever we have an uninitialized variable ("int a;") or a variable
initialized within an if statement that wasn’t evaluated for that particular test, we mark it as ’null’.

Finally, we often have codes that are implemented differently, but end up producing the same results.
Detecting these occurrences is hard to do for arbitrary programs, and often expensive, but we only
need to do it once during the creation of the dataset. Moreover, it can also be approximated by
checking whether two programs solve the test-cases of one another. We have currently standardized
each program by making variable names depend on their order of appearance instead of their original
name. Going forward, we plan on removing further symmetries (such as swapping a pair of lines
whose order does not affect the output or removing lines that do not affect the final output) by
expressing programs as graphs.
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Figure 2: Overview of input-output type signatures. Most problems involve few inputs and output
either integers or booleans. Some perform string or array manipulations.

Figure 3: (Left) Ratio of number of maximum number of lines executed for a test input vs maximum
number of lines executed for a training input; showing the requirement to generalize to longer
executions. (Center) Depth of indentation execution (nested loops and if statements), which often
significantly affects the difficulty of program induction. (Right) number of times each integer in
[-100,100] appears as an input or output on a test-case; note the logarithmic y-axis.

3.3 Statistical analysis

Figure 2 shows the most popular signatures. As expected, most involve integer manipulations as
well as classification problems from few variables. There are other signatures that involve array(list)
and string manipulations, often conditioned on other variables like integers or individual characters.
These are interesting as they often require to generalize to longer computations as well as bigger data
structures. Finally, there are other types that are more complex such as matrices or list of strings.

Figure 3 shows the difficulty of our tasks along three different axis. First, 30% of problems contain
either if-statements or loops that require generalizing to up to 10 times more operations than those
needed for training examples. Conditional execution (characterized by indentation in C++) is often
very hard for program induction techniques. Most programs have a single level of indentation (no
conditional execution), but some require multiple up to 4 levels of nested execution. Finally, we
observe that most input and outputs involve small positive integers (note the logarithmic y axis), but
many involve larger numbers. It is worth noting that these can extend up to ±2 · 109.
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4 Preliminary baselines

We made two types of very preliminary evaluations to make sure our dataset has the potential of
being useful: we checked that it is indeed hard for the most basic meta-learning approach whereas
humans can attain reasonable performance.

4.1 Exploratory human baselines

Figure 4: Fraction of problems solved
by humans after seeing n examples;
most problems only require a couple
of examples, with significant progress
until 5 examples.

Humans can infer programs from few examples and extrap-
olate them beyond the training distribution, but also have a
limited search capacity and cannot mentally execute large
programs. To assess the difficulty of our dataset, we choose
a random subset of 30 problems such that the number of ex-
ecuted lines was at most 5. We tested 5 humans with some
prior C++ exposure in high school, but who did not necessarily
major in Computer Science.
Subjects saw 10 test-cases and had to describe the program (in
natural language) that they believed generated the data. Out
of all 30 problems, 13 problems were solved by all 5 subjects,
and 10 were solved by some, but not all subjects. Each sub-
ject solved between 14 and 19 problems. These results are
encouraging because they show that most problems (at least
25/30 ≈ 83%) are feasible to infer, with a significant fraction
(1/3) being non-trivial. Even for tasks solved by everyone,
it is likely that this is still far from what most methods can
achieve at the moment, providing a challenging benchmark
for the meta-learning and program induction communities.

4.2 Exploratory meta-learning benchmark

We implement an LSTM-based meta-learning approach (the most basic "black-box" approach). There,
an LSTM encoder ingests the training set to obtain some parameters φ, then we concatenate these
parameters φ to each test query before feeding it to a feed-forward network that makes the final
prediction. We consider one of the easiest sub-benchmarks in our dataset, the integer to integer type
trace. We could make the (meta-)task harder by having multiple inputs, requiring outputs that are
more complex such as arrays, or even allowing diverse type traces.

The LSTM meta-learner achieved non-trivial accuracy, solving 19% of the test-cases vs. 11% of
guessing the most common answer (0). However, if we checked how many tasks it was able to solve
the single task of "return 0" (independently of the input). Note that this lack of generalization is
mostly due to being unable to generalize from meta-training to meta-test as it is able to get 75%
accuracy and solve 65% of the meta-training tasks. The reason why the current version cannot fully
overfit is because we only allow it to predict numbers between -100 and 100, something we plan to
solve for future versions, but already hints at one of the extrapolations difficulties of this benchmark.

5 Discussion

We present a new benchmark for few-shot extrapolation. We hope this sparks progress in making
powerful meta-learning algorithms that learn representations that generalize far beyond their distribu-
tion by exploiting compositionality. At the same time the structure of the dataset also enables other
interesting problems such as learning to search, generalizing to inputs of different types than tasks
seen at meta-training time, or meta-active learning by exploiting that we have oracles for each task.
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A Extra related work

Meta-learning meta-learning [12, 13, 14] aims at learning priors from many tasks so as to gen-
eralize to a new task from few amounts of data; for a nice recent survey see [15]. The three main
paradigms in meta-learning have been optimization-based approches, MAML being the primary
example [16], model-based approaches that tailor to a particular application (often image classifica-
tion) [17] and architecture-based approaches that use LSTMs, transformers, GNNs, etc to encode
the dataset before making a prediction [18, 19, 20]. Most of these methods assume that the input
form is uniform and do not typically generalize outside broadly outside the data distribution [21],
especially non-optimization-based approaches [22]. Given that we know tasks are generated by pieces
of code, this makes it close to AutoML [23], which often searches through code-like representations
to optimize machine learning models.

Related datasets Few-shot learning benchmarks have allowed great progress in meta-learning.
The two most popular ones are in few-shot classification for computer vision: miniImageNet [24]
and Omniglot [25]. Other notable few-shot classification benchmarks have been proposed such as
tieredImageNet [26], SlimageNet [27], CUB-200 [28] and meta-dataset [29]. There have also been
pushes to increase the generality of meta-reinforcement learning benchmarks to include completely
different virtual environments [30, 31] as well as learning an entire RL loss functions that generalize
between them [32].

B Further comments on current limitations and future work

There are a few practical limitation with the implemented pipeline that restrict some codes from
being added to our database. This does not affect the correctness of our tasks, but slightly biases
the distribution of codes in our benchmark with respect to the distribution of codes in competitive
programming as a whole.

In the current version of the dataset (we plan to expand it with even more tasks) we discard codes that
contain functions, as Cling cannot analyze them line-by-line. Therefore we cannot obtain sub-codes
from pieces of functions. We are currently discarding codes that have functions; however, in the
future we will add codes that contain functions, treating them as individual instructions that cannot
be split. To restrict the size of the overall dataset as well of the intermediate pipeline, we currently
remove test-cases that surpass 106 bits=125KB.

Programs in our tasks consist of contiguous segments of code where the output variable is modified
on the last line and input variables are all variables involved in this particular segment. However,
this implies that current programs contain lines or variables that do not necessarily affect the input.
Understanding these relations requires static analysis and we plan to do it in the near future.
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